Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hum Mol Genet ; 30(11): 1006-1019, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33822956

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Distrofina/deficiência , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Distrofia Muscular de Duchenne/patologia , Fenótipo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
2.
Development ; 147(21)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878913

RESUMO

Temple and Kagami-Ogata syndromes are genomic imprinting diseases caused by maternal and paternal duplication of human chromosome 14, respectively. They exhibit different postnatal muscle-related symptoms as well as prenatal placental problems. Using the mouse models for these syndromes, it has been demonstrated that retrotransposon gag like 1 [Rtl1, also known as paternally expressed 11 (Peg11)] located in the mouse orthologous imprinted region is responsible for the prenatal placental problems because it is an essential placental gene for maintenance of fetal capillary network during gestation. However, the causative imprinted gene for the postnatal muscle-related symptoms remains unknown. Here, we demonstrate that Rtl1 also plays an important role in fetal/neonatal skeletal muscle development: its deletion and overproduction in mice lead to neonatal lethality associated with severe but distinct skeletal muscle defects, similar to those of Temple and Kagami-Ogata syndromes, respectively. Thus, it is strongly suggested that RTL1 is the major gene responsible for the muscle defects in addition to the placental defects in these two genomic imprinting diseases. This is the first example of an LTR retrotransposon-derived gene specific to eutherians contributing to eutherian skeletal muscle development.


Assuntos
Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Músculos/anormalidades , Proteínas da Gravidez/deficiência , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Desmina/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculos/embriologia , Músculos/patologia , Mutação/genética , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Síndrome , Fatores de Tempo
3.
Am J Pathol ; 186(5): 1302-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26963343

RESUMO

Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy.


Assuntos
Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Osteopontina/metabolismo , Regeneração/fisiologia , Fatores Etários , Animais , Biomarcadores/metabolismo , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Diafragma/metabolismo , Cães , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/fisiopatologia , Fenótipo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
4.
Biochim Biophys Acta ; 1852(10 Pt A): 2170-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170062

RESUMO

Matrix metalloprotease (MMP)-9 is an endopeptidase associated with the pathogenesis of Duchenne muscular dystrophy (DMD). The precise function of MMP-9 in DMD has not been elucidated to date. We investigated the effect of genetic ablation of MMP-9 in the mdx mouse model (mdx/Mmp9(-/-)). At the early disease stage, the muscles of mdx/Mmp9(-/-) mice showed reduced necrosis and neutrophil invasion, accompanied by down-regulation of chemokine MIP-2. In addition, muscle regeneration was enhanced, which coincided with increased macrophage infiltration and upregulation of MCP-1, and resulted in increased muscle strength. The mdx/Mmp9(-/-) mice also displayed accelerated upregulation of osteopontin expression in skeletal muscle at the acute onset phase of dystrophy. However, at a later disease stage, the mice exhibited muscle growth impairment through altered expression of myogenic factors, and increased fibroadipose tissue. These results showed that MMP-9 might have multiple functions during disease progression. Therapy targeting MMP-9 may improve muscle pathology and function at the early disease stage, but continuous inhibition of this protein may result in the accumulation of fibroadipose tissues and reduced muscle strength at the late disease stage.

5.
In Vitro Cell Dev Biol Anim ; 60(7): 771-780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38561589

RESUMO

Muscular dystrophy in the NH-413 chicken is caused by a missense mutation in the WWP1 gene. WWP1 is a HECT-type E3 ubiquitin ligase containing four tandem WW domains that interact with proline-rich peptide motifs of target proteins, and a short region connecting the second and third WW domains is crucial for the E3 ligase to maintain an autoinhibitory state. A mutation of the arginine in the WW2-WW3 linker to glutamine is thought to affect WWP1 function, but there is little information on this mutation to date. In this study, we generated a transgenic (Tg) mouse model expressing the WWP1 transgene with the R436Q mutation, which corresponds to the missense mutation found in the NH-413 chicken. Tg mice showed marked degradation of mutant WWP1 proteins in various tissues, particularly in striated muscle. Immunoprecipitation analysis using a WWP1-specific antibody demonstrated that the mutant WWP1 proteins lacked the C-terminal catalytic cysteine residue that is required for their binding to the E2-substrate complex during their degradation. In vitro analysis using the R436Q mutant of WWP1 lacking this catalytic cysteine residue showed no autodegradation, indicating that the loss-of-function degradation of this protein is caused by self-ubiquitination. Tg mice expressing R436Q WWP1 did not show stunted growth or premature death. Furthermore, histological analysis did not reveal any obvious changes. These observations suggested that the R436Q mutant WWP1 protein, which is released from autoinhibitory mode by its missense mutation, does not have abnormally activated enzyme function to substrates before its self-degradation and loss of enzyme function.


Assuntos
Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Mutação de Sentido Incorreto/genética , Camundongos , Humanos , Galinhas
6.
Commun Biol ; 7(1): 523, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702481

RESUMO

Duchenne muscular dystrophy (DMD) is an intractable X-linked muscular dystrophy caused by mutations in the DMD gene. While many animal models have been used to study the disease, translating findings to humans has been challenging. Microminipigs, with their pronounced physiological similarity to humans and notably compact size amongst pig models, could offer a more representative model for human diseases. Here, we accomplished precise DMD modification in microminipigs by co-injecting embryos with Cas9 protein and a single-guide RNA targeting exon 23 of DMD. The DMD-edited microminipigs exhibited pronounced clinical phenotypes, including perturbed locomotion and body-wide skeletal muscle weakness and atrophy, alongside augmented serum creatine kinase levels. Muscle weakness was observed as of one month of age, respiratory and cardiac dysfunctions emerged by the sixth month, and the maximum lifespan was 29.9 months. Histopathological evaluations confirmed dystrophin deficiency and pronounced dystrophic pathology in the skeletal and myocardial tissues, demonstrating that these animals are an unprecedented model for studying human DMD. The model stands as a distinct and crucial tool in biomedical research, offering deep understanding of disease progression and enhancing therapeutic assessments, with potential to influence forthcoming treatment approaches.


Assuntos
Modelos Animais de Doenças , Distrofina , Músculo Esquelético , Distrofia Muscular de Duchenne , Porco Miniatura , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Suínos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Humanos , Masculino , Fenótipo
7.
Methods Mol Biol ; 2640: 193-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995596

RESUMO

Skeletal muscle can adjust to changes in physiological and pathological environments by regenerating using myogenic progenitor cells or adapting muscle fiber sizes and types, metabolism, and contraction ability. To study these changes, muscle samples should be appropriately prepared. Therefore, reliable techniques to accurately analyze and evaluate skeletal muscle phenotypes are required. However, although technical approaches to genetically investigating skeletal muscle are improving, the fundamental strategies for capturing muscle pathology are the same over the decades. Hematoxylin and eosin (H&E) staining or antibodies are the simplest and standard methodologies for assessing skeletal muscle phenotypes. In this chapter, we describe fundamental techniques and protocols for inducing skeletal muscle regeneration by using chemicals and cell transplantation, in addition to methods of preparing and evaluating skeletal muscle samples.


Assuntos
Transplante de Células , Músculo Esquelético , Camundongos , Animais , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Células-Tronco/fisiologia , Distrofina/genética
8.
Prog Neurobiol ; 216: 102288, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654209

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Camundongos , Distrofia Muscular de Duchenne/genética , Comportamento Social
9.
Nucleic Acid Ther ; 31(2): 172-181, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567244

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frameshift or nonsense mutations in the DMD gene, resulting in the loss of dystrophin from muscle membranes. Exon skipping using splice-switching oligonucleotides (SSOs) restores the reading frame of DMD pre-mRNA by generating internally truncated but functional dystrophin protein. To potentiate effective tissue-specific targeting by functional SSOs, it is essential to perform accelerated and reliable in vitro screening-based assessment of novel oligonucleotides and drug delivery technologies, such as cell-penetrating peptides, before their in vivo pharmacokinetic and toxicity evaluation. We have established novel canine immortalized myoblast lines by transducing murine cyclin-dependent kinase-4 and human telomerase reverse transcriptase genes into myoblasts isolated from beagle-based wild-type or canine X-linked muscular dystrophy in Japan (CXMDJ) dogs. These myoblast lines exhibited improved myogenic differentiation and increased proliferation rates compared with passage-15 primary parental myoblasts, and their potential to differentiate into myotubes was maintained in later passages. Using these dystrophin-deficient immortalized myoblast lines, we demonstrate that a novel cell-penetrating peptide (Pip8b2)-conjugated SSO markedly improved multiexon skipping activity compared with the respective naked phosphorodiamidate morpholino oligomers. In vitro screening using immortalized canine cell lines will provide a basis for further pharmacological studies on drug delivery tools.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Distrofina/genética , Morfolinos/farmacologia , Distrofia Muscular de Duchenne/terapia , Telomerase/genética , Animais , Linhagem Celular , Cães , Éxons/genética , Terapia Genética , Humanos , Camundongos , Morfolinos/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Sítios de Splice de RNA/genética
10.
Genes Cells ; 14(7): 835-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19549170

RESUMO

Cell polarity depends on extrinsic spatial cues and intrinsic polarity proteins including PAR-aPKC proteins. In mammalian epithelial cells, cell-cell contacts provide spatial cues that activate the aPKC-PAR-3-PAR-6 complex to establish the landmark of the initial cellular asymmetry. PAR-1, a downstream target of the aPKC-PAR-3-PAR-6 complex, mediates further development of the apical and basolateral membrane domains. However, the relationships between the PAR-aPKC proteins and other extrinsic spatial cues provided by the extracellular matrix (ECM) remain unclear. Here, we show that PAR-1 colocalizes with laminin receptors and is required for the assembly of extracellular laminin on the basal surface of epithelial cells. Furthermore, PAR-1 regulates the basolateral localization of the dystroglycan (DG) complex, one of the laminin receptors essential for basement membrane formation. We also show that PAR-1 interacts with the DG complex and is required for the formation of a functional DG complex. These results reveal the presence of a novel inside-out pathway in which an intracellular polarity protein regulates the ECM organization required for epithelial cell polarity and tissue morphogenesis.


Assuntos
Polaridade Celular/fisiologia , Distroglicanas/metabolismo , Laminina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Cães , Matriz Extracelular/metabolismo , Microscopia de Fluorescência , Receptores de Laminina/metabolismo , Transfecção
11.
J Mol Endocrinol ; 64(3): 195-208, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31940280

RESUMO

The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (VD3), exerts its tissue-specific actions through binding to its intracellular vitamin D receptor (VDR) which functions as a heterodimer with retinoid X receptor (RXR) to recognize vitamin D response elements (VDRE) and activate target genes. Upregulation of VDR in murine skeletal muscle cells occurs concomitantly with transcriptional regulation of key myogenic factors upon VD3 administration, reinforcing the notion that VD3 exerts beneficial effects on muscle. Herein we elucidated the regulatory role of VD3/VDR axis on the expression of dystrobrevin alpha (DTNA), a member of dystrophin-associated protein complex (DAPC). In C2C12 cells, Dtna and VDR gene and protein expression were upregulated by 1-50 nM of VD3 during all stages of myogenic differentiation. In the dystrophic-derived H2K-mdx52 cells, upregulation of DTNA by VD3 occurred upon co-transfection of VDR and RXR expression vectors. Silencing of MyoD1, an E-box binding myogenic transcription factor, did not alter the VD3-mediated Dtna induction, but Vdr silencing abolished this effect. We also demonstrated that VD3 administration enhanced the muscle-specific Dtna promoter activity in presence of VDR/RXR only. Through site-directed mutagenesis and chromatin immunoprecipitation assays, we have validated a VDRE site in Dtna promoter in myogenic cells. We have thus proved that the positive regulation of Dtna by VD3 observed during in vitro murine myogenic differentiation is VDR mediated and specific. The current study reveals a novel mechanism of VDR-mediated regulation for Dtna, which may be positively explored in treatments aiming to stabilize the DAPC in musculoskeletal diseases.


Assuntos
Proteínas Associadas à Distrofina/genética , Músculos/metabolismo , Neuropeptídeos/genética , Receptores de Calcitriol/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculos/efeitos dos fármacos , Músculos/fisiologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/fisiologia , Ativação Transcricional/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Elemento de Resposta à Vitamina D/genética
12.
J Cell Biol ; 158(6): 1097-107, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12221071

RESUMO

Alpha1-syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of alpha1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of alpha1-syntrophin-null (alpha1syn-/-) mice. After the treatment, alpha1syn-/- muscles displayed remarkable hypertrophy and extensive fiber splitting compared with wild-type regenerating muscles, although the untreated muscles of the mutant mice showed no gross histological change. In the hypertrophied muscles of the mutant mice, the level of insulin-like growth factor-1 transcripts was highly elevated. Interestingly, in an early stage of the regeneration process, alpha1syn-/- mice showed remarkably deranged neuromuscular junctions (NMJs), accompanied by impaired ability to exercise. The contractile forces were reduced in alpha1syn-/- regenerating muscles. Our results suggest that the lack of alpha1-syntrophin might be responsible in part for the muscle hypertrophy, abnormal synapse formation at NMJs, and reduced force generation during regeneration of dystrophin-deficient muscle, all of which are typically observed in the early stages of Duchenne muscular dystrophy patients.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/anatomia & histologia , Regeneração , Animais , Aquaporina 4 , Aquaporinas/análise , Proteínas de Ligação ao Cálcio , Proteínas Cardiotóxicas de Elapídeos/administração & dosagem , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Hipertrofia , Injeções Intramusculares , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/anatomia & histologia , Cadeias Pesadas de Miosina/metabolismo , Esforço Físico/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Somatomedinas/análise , Fatores de Tempo
13.
PLoS One ; 14(1): e0211597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699200

RESUMO

MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at the post-transcriptional level. Several miRNAs are exclusively expressed in skeletal muscle and participate in the regulation of muscle differentiation by interacting with myogenic factors. These miRNAs can be found at high levels in the serum of patients and animal models for Duchenne muscular dystrophy, which is expected to be useful as biomarkers for their clinical conditions. By miRNA microarray analysis, we identified miR-188 as a novel miRNA that is elevated in the serum of the muscular dystrophy dog model, CXMDJ. miR-188 was not muscle-specific miRNA, but its expression was up-regulated in skeletal muscles associated with muscle regeneration induced by cardiotoxin-injection in normal dogs and mice. Manipulation of miR-188 expression using antisense oligo and mimic oligo RNAs alters the mRNA expression of the myogenic regulatory factors, MRF4 and MEF2C. Our results suggest that miR-188 is a new player that participates in the gene regulation process of muscle differentiation and that it may serve as a serum biomarker reflecting skeletal muscle regeneration.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica , MicroRNAs/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Cães , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular Animal/sangue , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/patologia , Mioblastos/citologia , Mioblastos/metabolismo
14.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830866

RESUMO

Diabetes mellitus is associated with various disorders of the locomotor system including the decline in mass and function of skeletal muscle. The mechanism underlying this association has remained ambiguous, however. We now show that the abundance of the transcription factor KLF15 as well as the expression of genes related to muscle atrophy are increased in skeletal muscle of diabetic model mice, and that mice with muscle-specific KLF15 deficiency are protected from the diabetes-induced decline of skeletal muscle mass. Hyperglycemia was found to upregulate the KLF15 protein in skeletal muscle of diabetic animals, which is achieved via downregulation of the E3 ubiquitin ligase WWP1 and consequent suppression of the ubiquitin-dependent degradation of KLF15. Our results revealed that hyperglycemia, a central disorder in diabetes, promotes muscle atrophy via a WWP1/KLF15 pathway. This pathway may serve as a therapeutic target for decline in skeletal muscle mass accompanied by diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/complicações , Hiperglicemia/complicações , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Compostos Benzidrílicos/administração & dosagem , Células COS , Chlorocebus aethiops , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Glucosídeos/administração & dosagem , Células HEK293 , Humanos , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/prevenção & controle , Proteólise , Transdução de Sinais/genética , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Estreptozocina/toxicidade , Regulação para Cima
15.
J Biochem ; 159(2): 171-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26314333

RESUMO

A missense mutation in the gene encoding WWP1 was identified as the most promising candidate responsible for chicken muscular dystrophy (MD) by genetic linkage analysis. WWP1 is a HECT-type E3 ubiquitin protein ligase composed of 922 amino acids, which contains 4 tandem WW domains that interact with the proline-rich peptide motifs of target proteins. The missense mutation changes arginine 441 that is located in the centre of the WW domains into glutamine (R441Q), which potentially affects the function of the WWP1 protein. Here, we show that WWP1 is detected as ∼130-kDa protein that localizes to various structures, such as the plasma membrane (sarcolemma), sarcoplasmic reticulum, mitochondria and nucleus, in normal chicken skeletal muscle. However, in MD chickens, the mutant WWP1 protein was markedly degraded and was absent in the sarcolemma. These changes were also observed in the muscles of chickens in early pre-pathological states. Moreover, in vitro expression analysis showed significant degradation of mutant, but not wild-type WWP1, specifically in myogenic cells. Altogether, our data revealed that the R441Q missense mutation in the WWP1 protein causes degradation and loss of the sarcolemmal localization of WWP1, which may play a role in the pathogenesis of chicken MD.


Assuntos
Galinhas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Doenças das Aves Domésticas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Núcleo Celular/metabolismo , Galinhas/genética , Imuno-Histoquímica , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Mutação de Sentido Incorreto , Doenças das Aves Domésticas/genética , Proteólise , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
Acta Myol ; 24(2): 134-44, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16550931

RESUMO

Mutations in the dysferlin gene underlie two phenotypically distinct muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy 2B. Dysferlin was proposed to have a putative functional role in mediating the fusion of intracellular vesicles to the sarcolemma during injury-induced membrane repair, but dysferlin has been found not only at the sarcolemma but also within the cytoplasm of skeletal muscle fibers by immunohistochemistry. In this study, we examined the subcellular localization of dysferlin in skeletal muscle by immunohistochemical and biochemical analyses to elucidate other functional roles of dysferlin. Immunohistochemistry confirmed granular cytoplasmic expression pattern of dysferlin in muscle fibers. Subcellular membrane fractionation revealed that a portion of dysferlin associated with a T-tubule-enriched intracellular membrane fraction as well as a sarcolemmal fraction. This indication was consistent with subsequent results that dysferlin coprecipitates by immunoprecipitation with the dihydropyridine receptor (DHPR), a protein complex localized in T-tubules. Moreover, both proteins were observed to partially colocalize by double immunofluorescent labeling in skeletal muscle fibers. We also found that caveolin-3, previously shown to interact with dysferlin, coprecipitates with DHPR. These results demonstrated that dysferlin may be involved in the formation of an oligomeric complex with DHPR and caveolin-3. Caveolin-3 has been also reported to participate in an insulin-regulated transport mechanism in muscle, and caveolin-3-containing vesicles might traffic between intracellular sites and target sites on the sarcolemma and T-tubules. Therefore, it is very intriguing to assume that dysferlin might be involved in the fusion of caveolin-3-containing vesicles with T-tubules.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caveolina 3/metabolismo , Citoplasma/metabolismo , Disferlina , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Microssomos/metabolismo , Ratos , Ratos Wistar , Sarcolema/ultraestrutura
17.
Neuromuscul Disord ; 13(3): 193-206, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609501

RESUMO

While calf muscle hypertrophy is a striking diagnostic finding in sarcoglycanopathy, as it is in Duchenne and Becker muscular dystrophies, its pathogenetic mechanism remains unknown. gamma-Sarcoglycan, one of the subunits of the sarcoglycan complex, is the protein responsible for gamma-sarcoglycanopathy. To elucidate the pathogenetic mechanisms of muscle hypertrophy and degeneration in muscular dystrophy, we utilized a mutant mouse as a model animal. In this study, we generated gamma-sarcoglycan-deficient (gsg-/-) mice by gene targeting. The gsg-/- mice described here, similar to the gsg-/- mice reported previously (J Cell Biol 142 (1998) 1279), demonstrated skeletal and cardiac muscle degeneration. The limb, shoulder, and pelvic muscles of the gsg-/- mice exhibited progressive muscle hypertrophy and weakness with age, and the findings were similar to those seen in other mouse models for limb-girdle and Duchenne muscular dystrophy. We found that the number of muscle fibers increased with age, and most of the fibers in the hypertrophic muscle were centrally nucleated regenerating fibers. Therefore, muscle hypertrophy of the gsg-/- mice may result from an increase of the number of muscle fibers and probable fiber branching and may not be due to the pseudohypertrophy caused by fibrous and fat tissue replacement, as has been long supposed in muscular dystrophy. The muscle pathology became more 'dystrophic' in mice over 1 year of age when there was a marked variation in fiber size with interstitial fibrosis.


Assuntos
Proteínas do Citoesqueleto/deficiência , Glicoproteínas de Membrana/deficiência , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Peptídeos , Fatores Etários , Animais , Membrana Basal/fisiopatologia , Southern Blotting , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA Complementar , Modelos Animais de Doenças , Distroglicanas , Feminino , Substâncias de Crescimento , Homozigoto , Humanos , Hipertrofia , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , Fenótipo , Regeneração/fisiologia , Sarcoglicanas , Sobrevida
18.
Brain Res Mol Brain Res ; 125(1-2): 1-12, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15193417

RESUMO

Alpha-, beta-, gamma-, and delta-sarcoglycans (SGs) are transmembrane glycoprotein components of the dystrophin-associated protein (DAP) complex, which is critical for the stability of the striated muscle cell membrane. Epsilon-SG was found as a homologue of alpha-SG, but unlike other SG members, it is ubiquitously expressed in various tissues as well as in striated muscle. Moreover, mutations in the epsilon-SG gene cause myoclonus-dystonia, indicating the importance of epsilon-SG for the function in the central nervous system. To gain insight into the role of epsilon-SG, its expression and subcellular distribution in mouse tissues and especially in the mouse brain were investigated. Analysis by reverse transcription-polymerase chain reaction showed four splice variants of epsilon-SG transcripts in the mouse brain, two of which are major transcript forms. One is a conventional form including exon 8 (epsilon-SG1), and the other is a novel form excluding exon 8 but including a previously unknown exon, 11b (epsilon-SG2). Immunoblot analysis using various mouse tissues indicated a broad expression pattern for epsilon-SG1, but epsilon-SG2 was expressed exclusively in the brain. Therefore, both epsilon-SG isoforms coexist in various regions of the brain. Furthermore, these isoforms were found in neuronal cells using immunohistochemical analysis. Subcellular fractionation of brain homogenates, however, indicated that epsilon-SG1 and epsilon-SG2 are relatively enriched in post- and pre-synaptic membrane fractions, respectively. These results suggest that the two epsilon-SG isoforms might play different roles in synaptic functions of the central nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Glicoproteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sarcoglicanas , Frações Subcelulares/metabolismo , Sinapses/fisiologia , Distribuição Tecidual
19.
J Cell Sci ; 121(Pt 12): 2062-74, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18505798

RESUMO

In skeletal muscles, the sarcolemma is possibly stabilized and protected against contraction-imposed stress by intermediate filaments (IFs) tethered to costameric sarcolemma. Although there is emerging evidence that plectin links IFs to costameres through dystrophin-glycoprotein complexes (DGC), the molecular organization from plectin to costameres still remains unclear. Here, we show that plectin 1, a plectin isoform expressed in skeletal muscle, can interact with beta-synemin, actin and a DGC component, alpha-dystrobrevin, in vitro. Ultrastructurally, beta-synemin molecules appear to be incorporated into costameric dense plaques, where they seem to serve as actin-associated proteins rather than IF proteins. In fact, they can bind actin and alpha-dystrobrevin in vitro. Moreover, in vivo immunoprecipitation analyses demonstrated that beta-synemin- and plectin-immune complexes from lysates of muscle light microsomes contained alpha-dystrobrevin, dystrophin, nonmuscle actin, metavinculin, plectin and beta-synemin. These findings suggest a model in which plectin 1 interacts with DGC and integrin complexes directly, or indirectly through nonmuscle actin and beta-synemin within costameres. The DGC and integrin complexes would cooperate to stabilize and fortify the sarcolemma by linking the basement membrane to IFs through plectin 1, beta-synemin and actin. Besides, the two complexes, together with plectin and IFs, might have their own functions as platforms for distinct signal transduction.


Assuntos
Actinas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Plectina/metabolismo , Actinas/genética , Animais , Distrofina/deficiência , Distrofina/metabolismo , Proteínas Associadas à Distrofina/genética , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Plectina/química , Plectina/genética , Ligação Proteica , Ratos , Sarcolema/metabolismo , Sarcolema/ultraestrutura
20.
Hum Gene Ther ; 19(7): 719-30, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18578595

RESUMO

Autosomal recessive limb-girdle muscular dystrophy type 2D (LGMD 2D) is caused by mutations in the alpha-sarcoglycan gene (alpha-SG). The absence of alpha-SG results in the loss of the SG complex at the sarcolemma and compromises the integrity of the sarcolemma. To establish a method for recombinant adeno-associated virus (rAAV)-mediated alpha-SG gene therapy into alpha-SG-deficient muscle, we constructed rAAV serotypes 2 and 8 expressing the human alpha-SG gene under the control of the ubiquitous cytomegalovirus promoter (rAAV2-alpha-SG and rAAV8-alpha-SG). We compared the transduction profiles and evaluated the therapeutic effects of a single intramuscular injection of rAAVs into alpha-SG-deficient (Sgca(-/-)) mice. Four weeks after rAAV2 injection into the tibialis anterior (TA) muscle of 10-day-old Sgca(-/-) mice, transduction of the alpha-SG gene was localized to a limited area of the TA muscle. On the other hand, rAAV8-mediated alpha-SG expression was widely distributed in the hind limb muscle, and persisted for 7 months without inducing cytotoxic and immunological reactions, with a reversal of the muscle pathology and improvement in the contractile force of the Sgca(-/-) muscle. This extensive rAAV8-mediated alpha-SG transduction in LGMD 2D model animals paves the way for future clinical application.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Músculo Esquelético/virologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Recombinação Genética , Sarcoglicanas/metabolismo , Transdução Genética , Animais , Dependovirus/classificação , Vetores Genéticos , Humanos , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sarcoglicanas/deficiência , Sarcoglicanas/genética , Sorotipagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA