Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 33(3): 99-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684589

RESUMO

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.


Assuntos
Cerebelo , Camundongos Knockout , Proteína Básica da Mielina , Neurônios , Animais , Neurônios/metabolismo , Camundongos , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo
2.
J Food Sci ; 89(6): 3776-3787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767938

RESUMO

Dietary factors, particularly proteins, have been extensively explored to combat cognitive impairment. We have previously reported that dietary fish (Alaska Pollock) protein (APP) is more effective than casein (CAS) or fish oil in maintaining short-term memory in senescence-accelerated mice prone 10 (SAMP10). To examine the specificity of the protective effect of APP intakes against short-term memory decline, we assessed the impact of various dietary animal proteins, including APP, CAS, chicken breast protein (CP), and whey protein (WP), against age-related cognitive function in SAMP10 mice. After feeding the experimental diets for 5 months, memory was assessed using the Y-maze. The APP group exhibited a significant increase in spontaneous alternation behavior as an indicator of working memory when group compared with groups fed with other protein source. Additionally, the APP group displayed significantly higher neurofilament heavy chain positivity than the CAS and CP groups, as evidenced immunohistochemical analysis. Gut microbiota analysis indicated that dietary APP significantly enhanced the relative abundance of Lactobacillus, which positively correlated with spontaneous alternation behavior. Collectively, these findings suggest that dietary APP is more effective than CAS, CP, or WP in preventing age-related short-term memory decline and morphological abnormalities in the hippocampal axons of SAMP10 mice. Moreover, APP-mediated improvements in cognitive deficits may be associated with changes in microbiota diversity. PRACTICAL APPLICATION: This research suggests that dietary fish protein from Alaska Pollock may be more efficient in prevention short-term memory decline in mice, compared to other animal proteins. This finding has practical implications for nutritional optimization, developing the new health food products, and elucidating the relationship between the impact of specific proteins on gut microbiota and prevention of age-related cognitive decline.


Assuntos
Microbioma Gastrointestinal , Memória de Curto Prazo , Animais , Camundongos , Memória de Curto Prazo/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Envelhecimento , Proteínas do Soro do Leite/farmacologia , Hipocampo , Caseínas/farmacologia , Proteínas de Peixes , Disfunção Cognitiva/prevenção & controle , Gadiformes , Proteínas de Peixes da Dieta/farmacologia , Aprendizagem em Labirinto , Proteínas Animais da Dieta , Proteínas Alimentares/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA