Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 47(2): 366-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069516

RESUMO

ABCD4, which belongs to the ABC protein subfamily D, plays a role in the transport of cobalamin from lysosomes to the cytosol by cooperating with ATP-binding and ATP-hydrolysis. Pathogenic variants in the ABCD4 gene lead to an inherited metabolic disorder characterized by cobalamin deficiency. However, the structural requirements for cobalamin transport in ABCD4 remain unclear. In this study, six proteoliposomes were prepared, each containing a different chimeric ABCD4 protein, wherein each of the six transmembrane (TM) helices was replaced with the corresponding ABCD1. We analyzed the cobalamin transport activities of the ABCD mutants. In the proteoliposome with chimeric ABCD4 replacing TM helix 6, the cobalamin transport activity disappeared without a reduction in ATPase activity, indicating that TM helix 6 contributes to substrate recognition. Furthermore, the substitution of aspartic acid at position 329 or threonine at position 332 in TM helix 6 with the basic amino acid lysine led to a decrease in cobalamin-transport activity without causing a reduction in ATPase activity. The amino acids in TM helix 6 may be critically involved in substrate recognition; the charged state in the C-terminal half of TM helix 6 of ABCD4 is responsible for cobalamin transport activity.


Assuntos
Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Transporte Biológico/genética , Vitamina B 12/genética , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
2.
Exp Cell Res ; 433(2): 113855, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995922

RESUMO

Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Gotículas Lipídicas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Metabolismo dos Lipídeos , Mitose , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
3.
Biochem Biophys Res Commun ; 682: 118-123, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37806249

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive inherited disorder caused by biallelic mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SBDS protein is involved in ribosome biogenesis; therefore SDS is classified as a ribosomopathy. SBDS is localized at mitotic spindles and stabilizes microtubules. Previously, we showed that SBDS interacts with ring finger protein 2 (RNF2) and is degraded through RNF2-dependent ubiquitination. In this study, we investigated when and where SBDS interacts with RNF2 and the effects of the interaction on cells. We found that SBDS co-localized with RNF2 on centrosomal microtubules in the mitotic phase (M phase), whereas SBDS and RNF2 localized to the nucleolus and nucleoplasm in the interphase, respectively. The microtubule-binding assay revealed that SBDS interacted directly with microtubules and RNF2 interacted with SBDS bound to microtubules. In addition, SBDS was ubiquitinated and degraded by RNF2 during the M phase. Moreover, RNF2 overexpression accelerated mitotic progression. These findings suggest that SBDS delays mitotic progression, and RNF2 releases cells from suppression through the ubiquitination and subsequent degradation of SBDS. The interaction between SBDS and RNF2 at mitotic spindles might be involved in mitotic progression as a novel regulatory cascade.


Assuntos
Doenças da Medula Óssea , Insuficiência Pancreática Exócrina , Humanos , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/metabolismo , Proteínas/metabolismo , Síndrome de Shwachman-Diamond/complicações , Síndrome de Shwachman-Diamond/metabolismo , Fuso Acromático/metabolismo , Divisão Celular , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/metabolismo , Complexo Repressor Polycomb 1/metabolismo
4.
J Biol Chem ; 296: 100654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845046

RESUMO

Vitamin B12 (cobalamin) is an essential micronutrient for human health, and mutation and dysregulation of cobalamin metabolism are associated with serious diseases, such as methylmalonic aciduria and homocystinuria. Mutations in ABCD4 or LMBRD1, which encode the ABC transporter ABCD4 and lysosomal membrane protein LMBD1, respectively, lead to errors in cobalamin metabolism, with the phenotype of a failure to release cobalamin from lysosomes. However, the mechanism of transport of cobalamin across the lysosomal membrane remains unknown. We previously demonstrated that LMBD1 is required for the translocation of ABCD4 from the endoplasmic reticulum to lysosomes. This suggests that ABCD4 performs an important function in lysosomal membrane cobalamin transport. In this study, we expressed human ABCD4 and LMBD1 in methylotrophic yeast and purified them. We prepared ABCD4 and/or LMBD1 containing liposomes loaded with cobalamin and then quantified the release of cobalamin from the liposomes by reverse-phase HPLC. We observed that ABCD4 was able to transport cobalamin from the inside to the outside of liposomes dependent on its ATPase activity and that LMBD1 exhibited no cobalamin transport activity. These results suggest that ABCD4 may be capable of transporting cobalamin from the lysosomal lumen to the cytosol. Furthermore, we examined a series of ABCD4 missense mutations to understand how these alterations impair cobalamin transport. Our findings give insight into the molecular mechanism of cobalamin transport by which ABCD4 involves and its importance in cobalamin deficiency.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membranas Intracelulares/metabolismo , Lipossomos/metabolismo , Mutação , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Saccharomycetales/metabolismo , Vitamina B 12/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
5.
Biochem Biophys Res Commun ; 598: 119-123, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35158210

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene that has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. The SBDS protein is considered to be involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. The multiple functions imply that certain proteins might associate with SBDS and affect its function. In this study, we identified Ring finger protein 2 (RNF2) as a candidate for the SBDS interactor by yeast two-hybrid screening. Moreover, we confirmed the interaction by GST-pull down assay using recombinant proteins and co-immunoprecipitation in HEK293T cells overexpressing RNF2. In addition, it is shown that RNF2 ubiquitinates SBDS and promotes its proteasomal degradation in HEK293T cells. These findings provide new insights into the regulation of SBDS.


Assuntos
Complexo Repressor Polycomb 1/metabolismo , Proteínas/metabolismo , Precursores Enzimáticos/metabolismo , Células HEK293 , Humanos , Elastase Pancreática/metabolismo , Complexo Repressor Polycomb 1/genética , Estabilidade Proteica , Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Chem Pharm Bull (Tokyo) ; 70(8): 533-539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908918

RESUMO

The ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and exist in almost all living organisms from eubacteria to mammals. They transport diverse substrates across membranes utilizing the energy of ATP hydrolysis as a driving force and play an essential role in cellular homeostasis. In humans, four ABC transporters classified as subfamily D have been identified. ABCD1-3 are localized to peroxisomal membranes and involved in the transport of various acyl-CoAs from the cytosol to the peroxisomal lumen. ABCD4 functions on the lysosomal membranes and transports vitamin B12 (cobalamin) from lysosomes into the cytosol. The mutation of genes encoding ABCD1, ABCD3, and ABCD4 are responsible for genetic diseases called X-linked adrenoleukodystrophy, congenital bile acid synthesis defect 5, and cobalamin deficiency, respectively. In this review, we summarize the targeting mechanism and physiological functions of the ABCD transporters and discuss insights that have been obtained on the transport mechanism based on disease-causing mutations and cryo-electron microscopy (EM) structural studies.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vitamina B 12 , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Microscopia Crioeletrônica , Humanos , Mamíferos/metabolismo , Especificidade por Substrato
7.
J Inherit Metab Dis ; 44(3): 718-727, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33332637

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a severe inherited metabolic disease with cerebral inflammatory demyelination and abnormal accumulation of very long chain fatty acid (VLCFA) in tissues, especially the brain. At present, bone marrow transplantation (BMT) at an early stage of the disease is the only effective treatment for halting disease progression, but the underlying mechanism of the treatment has remained unclear. Here, we transplanted GFP-expressing wild-type (WT) or Abcd1-deficient (KO) bone marrow cells into recipient KO mice, which enabled tracking of the donor GFP+ cells in the recipient mice. Both the WT and KO donor cells were equally distributed throughout the brain parenchyma, and displayed an Iba1-positive, GFAP- and Olig2-negative phenotype, indicating that most of the donor cells were engrafted as microglia-like cells. They constituted approximately 40% of the Iba1-positive cells. Unexpectedly, no decrease of VLCFA in the cerebrum was observed when WT bone marrow cells were transplanted into KO mice. Taken together, murine study suggests that bone marrow-derived microglia-like cells engrafted in the cerebrum of X-ALD patients suppress disease progression without evidently reducing the amount of VLCFA in the cerebrum.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/deficiência , Adrenoleucodistrofia/terapia , Transplante de Medula Óssea , Encéfalo/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
8.
Biol Pharm Bull ; 42(5): 649-665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061307

RESUMO

Peroxisomes are indispensable organelles in mammals including humans. They are involved in the ß-oxidation of very long chain fatty acids, and the synthesis of ether phospholipids and bile acids. Pre-peroxisomes bud from endoplasmic reticulum and peroxisomal membrane and matrix proteins are imported to the pre-peroxisomes. Then, matured peroxisomes grow by division. Impairment of the biogenesis and function of peroxisomes results in severe diseases. Since I first undertook peroxisome research in Prof. de Duve's laboratory at Rockefeller University in 1985, I have continuously studied peroxisomes for more than 30 years, with a particular focus on the ATP-binding cassette (ABC) transporters. Here, I review the history of peroxisome research, the biogenesis and function of peroxisomes, and peroxisome disease including X-linked adrenoleukodystrophy. The review includes the targeting and function of the ABC transporter subfamily D.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peroxissomos/metabolismo , Adrenoleucodistrofia/metabolismo , Animais , Humanos
9.
Biochem Biophys Res Commun ; 496(4): 1122-1127, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397936

RESUMO

In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1‒3 are located on peroxisomal membrane and play an important role in the transportation of various fatty acid-CoA derivatives, including very long chain fatty acid-CoA, into peroxisomes. ABCD4 is located on lysosomal membrane and is suggested to be involved in the transport of vitamin B12 from lysosomes to the cytosol. However, the precise transport mechanism by which these ABC transporters facilitate the import or export of substrate has yet to be well elucidated. In this study, the overexpression of human ABCD1‒4 in the methylotrophic yeast Pichia pastoris and a purification procedure were developed. The detergent-solubilized proteins were reconstituted into liposomes. ABCD1‒4 displayed stable ATPase activity, which was inhibited by AlF3. Furthermore, ABCD1‒4 were found to possess an equal levels of acyl-CoA thioesterase activity. Proteoliposomes is expected to be an aid in the further biochemical characterization of ABCD transporters.


Assuntos
Subfamília D de Transportador de Cassetes de Ligação de ATP/química , Lipossomos/química , Proteolipídeos/química , Sítios de Ligação , Ativação Enzimática , Estabilidade Enzimática , Cinética , Ligação Proteica
10.
J Inherit Metab Dis ; 39(5): 725-731, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324171

RESUMO

The purpose of this study is to establish an assay method to screen for chemical compounds that stimulate peroxisomal fatty acid ß-oxidation activity in X-linked adrenoleukodystropy (X-ALD) fibroblasts. In this investigation, we used 12-(1-pyrene)dodecanoic acid (pyrene-C12:0), a fluorescent fatty acid analog, as a substrate for fatty acid ß-oxidation. When human skin fibroblasts were incubated with pyrene-C12:0, ß-oxidation products such as pyrene-C10:0 and pyrene-C8:0 were generated time-dependently. These ß-oxidation products were scarcely detected in the fibroblasts from patients with Zellweger syndrome, a peroxisomal biogenesis disorder. In contrast, in fibroblasts with mitochondrial carnitine-acylcarnitine translocase deficiency, the ß-oxidation products were detected at a level similar to control fibroblasts. These results indicate that the ß-oxidation of pyrene-C12:0 takes place in peroxisomes, but not mitochondria, so pyrene-C12:0 is useful for measuring peroxisomal fatty acid ß-oxidation activity. In X-ALD fibroblasts, the ß-oxidation activity for pyrene-C12:0 was approximately 40 % of control fibroblasts, which is consistent with previous results using [1-(14)C]lignoceric acid as the substrate. The present study provides a convenient procedure for screening chemical compounds that stimulate the peroxisomal fatty acid ß-oxidation in X-ALD fibroblasts.


Assuntos
Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Adrenoleucodistrofia/metabolismo , Carnitina Aciltransferases/deficiência , Carnitina Aciltransferases/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Ácidos Láuricos/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Transtornos Peroxissômicos/metabolismo , Pirenos/metabolismo , Pele/metabolismo , Síndrome de Zellweger/metabolismo
11.
J Pharmacol Sci ; 129(1): 51-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26354408

RESUMO

Type 2 diabetes mellitus (T2DM) arises primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important in the development of T2DM, including obesity. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase 1 inhibitor, reduced body weight depending on dietary fat in diet-induced obesity (DIO) rats in our previous study. Here, the effect of JTT-553 on glucose metabolism was evaluated using body weight reduction in T2DM mice. JTT-553 was repeatedly administered to DIO and KK-A(y) mice. JTT-553 reduced body weight gain and fat weight in both mouse models. In DIO mice, JTT-553 decreased insulin, non-esterified fatty acid (NEFA), total cholesterol (TC), and liver triglyceride (TG) plasma concentrations in non-fasting conditions. JTT-553 also improved insulin-dependent glucose uptake in adipose tissues and glucose intolerance in DIO mice. In KK-A(y) mice, JTT-553 decreased glucose, NEFA, TC and liver TG plasma concentrations in non-fasting conditions. JTT-553 also decreased glucose, insulin, and TC plasma concentrations in fasting conditions. In addition, JTT-553 decreased TNF-α mRNA levels and increased GLUT4 mRNA levels in adipose tissues in KK-A(y) mice. These results suggest that JTT-553 improves insulin resistance in adipose tissues and systemic glucose metabolism through reductions in body weight.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Glucose/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Oxazinas/farmacologia , Compostos de Espiro/farmacologia , Aumento de Peso/efeitos dos fármacos , Acil Coenzima A , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Oxazinas/administração & dosagem , Compostos de Espiro/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
12.
Biol Pharm Bull ; 38(12): 1980-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26447095

RESUMO

Newly synthesized secretory proteins are folded and assembled in the endoplasmic reticulum (ER), where an efficient protein quality control system performs a critically important function. When unfolded or aggregated proteins accumulate in the ER, certain signaling pathways such as the unfolded protein response (UPR) and ER-overload response (EOR) are functionally active in maintaining cell homeostasis. Recently we prepared Chinese hamster ovary (CHO) cells expressing mutant antithrombin (AT)(C95R) under control of the Tet-On system and showed that AT(C95R) accumulated in Russell bodies (RB), large distinctive structures derived from the ER. To characterize whether ER stress takes place in CHO cells, we examined characteristic UPR and EOR in ER stress responses. We found that the induction of ER chaperones such as Grp97, Grp78 and protein disulfide isomerase (PDI) was limited to a maximum of approximately two-fold. The processing of X-box-binding protein-1 (XBP1) mRNA and the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) subunit were not induced. Furthermore, the activation of nuclear factor-kappa B (NF-κB) was not observed. In contrast, CHO cells displayed UPR and EOR when the cells were treated with thapsigargin and tumor necrosis factor (TNF)-α, respectively. In addition, a portion of the mutant AT(C95R) was degraded through proteasomes and autophagy. CHO cells do respond to ER stress but the folding state of mutant AT(C95R) does not appear to activate the ER stress signal pathway.


Assuntos
Antitrombinas/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/metabolismo , Proteólise , Resposta a Proteínas não Dobradas , Animais , Células CHO , Cricetulus , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Transdução de Sinais , Fatores de Transcrição/metabolismo
13.
Biol Pharm Bull ; 38(6): 852-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25787801

RESUMO

The endoplasmic reticulum (ER) adjusts its size and architecture to adapt to change in the surrounding environment. Russell bodies (RBs) were originally described as dilated structures of the ER cisternae containing large amounts of mutant immunoglobulin. Similar structures are observed in a wide variety of mutant proteins accumulated in the ER. We previously prepared Chinese hamster ovary (CHO) cells in which the expression of mutant antithrombin (AT) (C95R) was controlled with a Tet-On system and showed that RBs can be conditionally formed. However the precise architecture and intracellular behavior of RBs have been as yet only poorly characterized. To characterize the properties of RB, we prepared the same system using a green fluorescent protein (GFP)-fused mutant and measured the dynamics and architecture of RBs. We observed the mobile nature of the molecule in the RB lumen and RBs were separated from the rest of the ER network by narrow tubes. Furthermore, we found that the RBs were not simply expanded ER membranes. The RB lumen is filled with misfolded proteins that are surrounded by ER membranes. In addition, RBs mostly maintain their structure during cell division, possess ribosomes on their membranes and synthesize AT(C95R)-GFP. Based on the characterization of the hydrodynamic radius of AT(C95R)-GFP and the effect of DP1, an ER-shaping protein, we propose that RBs are spontaneously formed as a result of the partitioning of the misfolded AT with the shaping protein.


Assuntos
Antitrombinas/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Mutantes/metabolismo , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/metabolismo
14.
Metab Brain Dis ; 30(6): 1359-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26108493

RESUMO

The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin.


Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Química Encefálica/genética , Ácidos Graxos/metabolismo , Microssomos/metabolismo , Bainha de Mielina/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Animais , Inibidores Enzimáticos/farmacologia , Etilmaleimida/farmacologia , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Malonil Coenzima A/antagonistas & inibidores , Malonil Coenzima A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
EMBO J ; 29(24): 4083-93, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21102411

RESUMO

Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.


Assuntos
Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Peroxinas , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência
16.
Biochem Biophys Res Commun ; 453(3): 612-8, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25301552

RESUMO

In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1-3 possesses the NH2-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH2-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH2-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH2-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH2-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH2-terminal H0 motif in organelle targeting is widely conserved in living organisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Frações Subcelulares/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Animais , Arabidopsis/metabolismo , Células CHO , Caenorhabditis elegans/metabolismo , Cricetinae , Cricetulus , Células Eucarióticas/metabolismo , Imunofluorescência , Interações Hidrofóbicas e Hidrofílicas
17.
Biochim Biophys Acta ; 1822(9): 1387-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22366764

RESUMO

ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal ß-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acil Coenzima A/metabolismo , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Animais , Transporte Biológico Ativo , Humanos , Metabolismo dos Lipídeos , Neurônios/metabolismo , Filogenia , Conformação Proteica , Transporte Proteico
18.
Biol Pharm Bull ; 35(11): 1972-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23123468

RESUMO

Very long chain fatty acid (VLCFA) metabolism in astrocytes is important for the maintenance of myelin structure in central nervous system. To analyze the contribution of the ABCD1-dependent and -independent pathways to VLCFA metabolism in astrocytes, we prepared human glioblastoma U87 cells with a silencing of ABCD1 and primary astrocytes from abcd1-deficient mice, and measured fatty acid ß-oxidation in the presence or absence of a potent inhibitor of carnitine palmitoyltransferase I, 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In U87 cells, C24:0 ß-oxidation was decreased to ca. 70% of the control in the presence of POCA, and the activity was further decreased to ca. 20% by the silencing of ABCD1. In mouse primary astrocytes, C24:0 ß-oxidation was also decreased to ca. 70% of the control in the presence of POCA. The C24:0 ß-oxidation in Abcd1-deficient primary astrocytes was ca. 60% of the wild-type cells and the activity was further decreased to ca. 25% in the presence of POCA. Compared to human skin fibroblasts, in which VLCFA ß-oxidation is not significantly inhibited by POCA, approximately one-third of the overall VLCFA ß-oxidation was inhibited in both types of astrocytic cells. These results suggest that VLCFA is indeed ß-oxidized in ABCD1-dependent pathway, but the ABCD1-independent peroxisomal and mitochondrial ß-oxidation pathways significantly contribute to VLCFA ß-oxidation in astrocytic cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Compostos de Epóxi/farmacologia , Fibroblastos/metabolismo , Inativação Gênica , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Peroxissomos/metabolismo
19.
J Biol Chem ; 285(34): 26315-25, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20566640

RESUMO

Peroxisomes play an essential role in a number of important metabolic pathways including beta-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various beta-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a diazirine moiety as a photophore, and performed photoaffinity labeling of purified rat liver peroxisomes. As a result, an 80-kDa peroxisomal protein was specifically labeled by the photoaffinity ligand, and the labeling efficiency competitively decreased in the presence of palmitoyl-CoA. Mass spectrometric analysis identified the 80-kDa protein as peroxisomal multifunctional enzyme type 2 (MFE2), one of the peroxisomal beta-oxidation enzymes. Recombinant rat MFE2 was also labeled by the photoaffinity ligand, and mass spectrometric analysis revealed that a fragment of rat MFE2 (residues Trp(249) to Arg(251)) was labeled by the ligand. MFE2 mutants bearing these residues, MFE2(W249A) and MFE2(R251A), exhibited decreased labeling efficiency. Furthermore, MFE2(W249G), which corresponds to one of the disease-causing mutations in human MFE2, also exhibited a decreased efficiency. Based on the crystal structure of rat MFE2, these residues are located on the top of a hydrophobic cavity leading to an active site of MFE2. These data suggest that MFE2 anchors its substrate around the region from Trp(249) to Arg(251) and positions the substrate along the hydrophobic cavity in the proper direction toward the catalytic center.


Assuntos
17-Hidroxiesteroide Desidrogenases/análise , 17-Hidroxiesteroide Desidrogenases/genética , Enoil-CoA Hidratase/análise , Enoil-CoA Hidratase/genética , Complexos Multienzimáticos/análise , Complexos Multienzimáticos/genética , Ácido Palmítico/química , Peroxissomos/enzimologia , Animais , Sítios de Ligação , Diazometano/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado , Técnicas de Sonda Molecular , Mutação de Sentido Incorreto , Oxirredução , Proteína Multifuncional do Peroxissomo-2 , Marcadores de Fotoafinidade , Ratos
20.
Hepatology ; 52(2): 623-33, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20683960

RESUMO

UNLABELLED: Peroxisomes are particularly abundant in the liver and are involved in bile salt synthesis and fatty acid metabolism. Peroxisomal membrane proteins (PMPs) are required for peroxisome biogenesis [e.g., the interacting peroxisomal biogenesis factors Pex13p and Pex14p] and its metabolic function [e.g., the adenosine triphosphate-binding cassette transporters adrenoleukodystrophy protein (ALDP) and PMP70]. Impaired function of PMPs is the underlying cause of Zellweger syndrome and X-linked adrenoleukodystrophy. Here we studied for the first time the putative association of PMPs with cholesterol-enriched lipid rafts and their function in peroxisome biogenesis. Lipid rafts were isolated from Triton X-100-lysed or Lubrol WX-lysed HepG2 cells and analyzed for the presence of various PMPs by western blotting. Lovastatin and methyl-beta-cyclodextrin were used to deplete cholesterol and disrupt lipid rafts in HepG2 cells, and this was followed by immunofluorescence microscopy to determine the subcellular location of catalase and PMPs. Cycloheximide was used to inhibit protein synthesis. Green fluorescent protein-tagged fragments of PMP70 and ALDP were analyzed for their lipid raft association. PMP70 and Pex14p were associated with Triton X-100-resistant rafts, ALDP was associated with Lubrol WX-resistant rafts, and Pex13p was not lipid raft-associated in HepG2 cells. The minimal peroxisomal targeting signals in ALDP and PMP70 were not sufficient for lipid raft association. Cholesterol depletion led to dissociation of PMPs from lipid rafts and impaired sorting of newly synthesized catalase and ALDP but not Pex14p and PMP70. Repletion of cholesterol to these cells efficiently reestablished the peroxisomal sorting of catalase but not ALDP. CONCLUSION: Human PMPs are differentially associated with lipid rafts independently of the protein homology and/or their functional interaction. Cholesterol is required for peroxisomal lipid raft assembly and peroxisome biogenesis.


Assuntos
Microdomínios da Membrana/fisiologia , Proteínas de Membrana/fisiologia , Peroxissomos/fisiologia , Fenômenos Biológicos , Colesterol/fisiologia , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA