RESUMO
Traditionally, the brainstem has been seen as hardwired and poorly capable of plastic adaptations following spinal cord injury (SCI). Data acquired over the past decades, however, suggest differently: following SCI in various animal models (lamprey, chick, rodents, nonhuman primates), different forms of spontaneous anatomic plasticity of reticulospinal projections, many of them originating from the gigantocellular reticular nucleus (NRG), have been observed. In line with these anatomic observations, animals and humans with incomplete SCI often show various degrees of spontaneous motor recovery of hindlimb/leg function. Here, we investigated the functional relevance of two different modes of reticulospinal fiber growth after cervical hemisection, local rewiring of axotomized projections at the lesion site versus compensatory outgrowth of spared axons, using projection-specific, adeno-associated virus-mediated chemogenetic neuronal silencing. Detailed assessment of joint movements and limb kinetics during overground locomotion in female adult rats showed that locally rewired as well as compensatory NRG fibers were responsible for different aspects of recovered forelimb and hindlimb functions (i.e., stability, strength, coordination, speed, or timing). During walking and swimming, both locally rewired as well as compensatory NRG plasticity were crucial for recovered function, while the contribution of locally rewired NRG plasticity to wading performance was limited. Our data demonstrate comprehensively that locally rewired as well as compensatory plasticity of reticulospinal axons functionally contribute to the observed spontaneous improvement of stepping performance after incomplete SCI and are at least partially causative to the observed recovery of function, which can also be observed in human patients with spinal hemisection lesions.SIGNIFICANCE STATEMENT Following unilateral hemisection of the spinal cord, reticulospinal projections are destroyed on the injured side, resulting in impaired locomotion. Over time, a high degree of recovery can be observed in lesioned animals, like in human hemicord patients. In the rat, recovery is accompanied by pronounced spontaneous plasticity of axotomized and spared reticulospinal axons. We demonstrate the causative relevance of locally rewired as well as compensatory reticulospinal plasticity for the recovery of locomotor functions following spinal hemisection, using chemogenetic tools to selectively silence newly formed connections in behaviorally recovered animals. Moving from a correlative to a causative understanding of the role of neuroanatomical plasticity for functional recovery is fundamental for successful translation of treatment approaches from experimental studies to the clinics.
Assuntos
Locomoção , Formação Reticular/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios , Axotomia , Fenômenos Biomecânicos , Feminino , Membro Anterior/fisiopatologia , Membro Posterior/fisiopatologia , Fibras Nervosas , Regeneração Nervosa , Plasticidade Neuronal , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Natação , CaminhadaRESUMO
BACKGROUND: Endometriosis is characterized by the ectopic occurrence of endometrial tissue. Though considered benign, endometriotic lesions possess tumor-like properties such as tissue invasion and remodeling of the extracellular matrix. One major clinical hurdle concerning endometriosis is its diagnosis. The diagnostic modalities ultrasound and MRI are often unable to detect all lesions, and a clear correlation between imaging and clinical symptoms is still controversial. Therefore, it was our aim to identify a potential target to image active endometriotic lesions. RESULTS: For our studies, we employed the preclinical radiotracer [111In]In-FnBPA5, which specifically binds to relaxed fibronectin-an extracellular matrix protein with key functions in homeostasis that has been implicated in the pathogenesis of diseases such as cancer and fibrosis. We employed this tracer in biodistribution as well as SPECT/CT studies in mice and conducted immunohistochemical stainings on mouse uterine tissue as well as on patient-derived endometriosis tissue. In biodistribution and SPECT/CT studies using the radiotracer [111In]In-FnBPA5, we found that radiotracer uptake in the myometrium varies with the estrous cycle of the mouse, leading to higher uptake of [111In]In-FnBPA5 during estrogen-dependent phases, which indicates an increased abundance of relaxed fibronectin when estrogen levels are high. Finally, immunohistochemical analysis of patient samples demonstrated that there is preferential relaxation of fibronectin in the proximity of the endometriotic stroma. CONCLUSION: Estrous cycle stages characterized by high estrogen levels result in a higher abundance of relaxed fibronectin in the murine myometrium. This finding together with a first proof-of-concept study employing human endometriosis tissues suggests that relaxed fibronectin could be a potential target for the development of a diagnostic radiotracer targeting endometriotic lesions. With [111In]In-FnBPA5, the matching targeting molecule is in preclinical development.
RESUMO
Two things are worth remembering about an aversive event: What made it happen? What made it cease? If a stimulus precedes an aversive event, it becomes a signal for threat and will later elicit behavior indicating conditioned fear. However, if the stimulus is presented upon cessation of the aversive event, it elicits behavior indicating conditioned "relief." What are the neuronal bases for such learning? Using functional magnetic resonance imaging (fMRI) in humans we found that a fear-conditioned stimulus activates amygdala but not striatum, whereas a relief-conditioned stimulus activates striatum but not amygdala. Correspondingly, acute inactivation of amygdala or of ventral striatum in rats respectively abolished only conditioned fear or only conditioned relief. Thus, the behaviorally opponent memories supported by onset and offset of aversive events engage and require fear and reward networks, respectively. This may explain attraction to stimuli associated with the cessation of trauma or of panic attacks.
Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Condicionamento Clássico/fisiologia , Medo , Aprendizagem/fisiologia , Memória/fisiologia , Recompensa , Animais , Humanos , Imageamento por Ressonância Magnética , RatosRESUMO
α-particle emitters have recently been explored as valuable therapeutic radionuclides. Yet, toxicity to healthy organs and cancer radioresistance limit the efficacy of targeted α-particle therapy (TAT). Identification of the radiation-activated mechanisms that drive cancer cell survival provides opportunities to develop new points for therapeutic interference to improve the efficacy and safety of TAT. Methods: Quantitative phosphoproteomics and matching proteomics followed by the bioinformatics analysis were used to identify alterations in the signaling networks in response to TAT with the 225Ac-labeled minigastrin analog 225Ac-PP-F11N (DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) in A431 cells, which overexpress cholecystokinin B receptor (CCKBR). Western blot analysis and microscopy verified the activation of the selected signaling pathways. Small-molecule inhibitors were used to validate the potential of the radiosensitizing combinatory treatments both in vitro and in A431/CCKBR tumor-bearing nude mice. Results: TAT-induced alterations were involved in DNA damage response, cell cycle regulation, and signal transduction, as well as RNA transcription and processing, cell morphology, and transport. Western blot analysis and microscopy confirmed increased phosphorylations of the key proteins involved in DNA damage response and carcinogenesis, including p53, p53 binding protein 1 (p53BP1), histone deacetylases (HDACs), and H2AX. Inhibition of HDAC class II, ataxia-telangiectasia mutated (ATM), and p38 kinases by TMP269, AZD1390, and SB202190, respectively, sensitized A431/CCKBR cells to 225Ac-PP-F11N. As compared with the control and monotherapies, the combination of 225Ac-PP-F11N with the HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) significantly reduced the viability and increased the DNA damage of A431/CCKBR cells, led to the most pronounced tumor growth inhibition, and extended the mean survival of A431/CCKBR xenografted nude mice. Conclusion: Our study revealed the cellular responses to TAT and demonstrated the radiosensitizing potential of HDAC inhibitors to 225Ac-PP-F11N in CCKBR-positive tumors. This proof-of-concept study recommends development of novel radiosensitizing strategies by targeting TAT-activated and survival-promoting signaling pathways.
Assuntos
Inibidores de Histona Desacetilases , Proteína Supressora de Tumor p53 , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Vorinostat/farmacologia , Transdução de Sinais , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêuticoRESUMO
The vast majority of our knowledge regarding cancer radiobiology and the activation of radioresistance mechanisms emerged from studies using external beam radiation therapy (EBRT). Yet, less is known about the cancer response to internal targeted radionuclide therapy (TRT). Our comparative phosphoproteomics analyzed cellular responses to TRT with lutetium-177-labeled minigastrin analogue [177Lu]Lu-PP-F11N (ß-emitter) and EBRT (É£-rays) in CCKBR-positive cancer cells. Activation of DNA damage response by p53 was induced by both types of radiotherapy, whereas TRT robustly increased activation of signaling pathways including epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs) or integrin receptor. Inhibition of EGFR or integrin signaling sensitized cancer cells to radiolabeled minigastrin. In vivo, EGFR inhibitor erlotinib increased therapeutic response to [177Lu]Lu-PP-F11N and median survival of A431/CCKBR-tumor bearing nude mice. In summary, our study explores a complex scenario of cancer responses to different types of irradiation and pinpoints the radiosensitizing strategy, based on the targeting survival pathways, which are activated by TRT.
Assuntos
Neoplasias , Radioisótopos , Animais , Linhagem Celular Tumoral , Receptores ErbB , Integrinas , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos/uso terapêuticoRESUMO
The inhibition of the mammalian target of rapamycin complex 1 (mTORC1) by everolimus (RAD001) was recently shown to enhance the tumor uptake of radiolabeled minigastrin. In this paper, we investigate if this finding can improve the in vivo therapeutic response to [177Lu]Lu-PP-F11N treatment. The N-terminal DOTA-conjugated gastrin analogue PP-F11N (DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) was used to evaluate treatment efficacy in the human A431/CCKBR xenograft nude mouse model in combination with RAD001. Both RAD001 and [177Lu]Lu-PP-F11N single treatments as well as their combination inhibited tumor growth and increased survival. In concomitantly treated mice, the average tumor size and median survival time were significantly reduced and extended, respectively, as compared to the monotherapies. The histological analysis of kidney and stomach dissected after treatment with RAD001 and [177Lu]Lu-PP-F11N did not indicate significant adverse effects. In conclusion, our study data demonstrate the potential of mTORC1 inhibition to substantially improve the therapeutic efficacy of radiolabeled minigastrin analogues in CCKBR-positive cancers.
RESUMO
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and hold promise for the treatment of malignant tumors. In these preclinical studies, we developed and evaluated CCKBR-targeted alpha particle therapy. The cellular uptake and cytotoxic effect of actinium-225 labeled and HPLC-purified minigastrin analogue [225Ac]Ac-PP-F11N were characterized in the human squamous cancer A431 cells transfected with CCKBR. Nude mice bearing A431/CCKBR tumors were used for biodistribution and therapy studies followed by histological analysis and SPECT/CT imaging. In vitro, [225Ac]Ac-PP-F11N showed CCKBR-specific and efficient internalization rate and potent cytotoxicity. The biodistribution studies of [225Ac]Ac-PP-F11N revealed CCKBR-specific uptake in tumors, whereas the therapeutic studies demonstrated dose-dependent inhibition of tumor growth and extended mean survival time, without apparent toxicity. The histological analysis of kidney and stomach indicated no severe adverse effects after [225Ac]Ac-PP-F11N administration. The post-therapy SPECT-CT images with [111In]In-PP-F11N confirmed no CCKBR-positive tumor left in the mice with complete remission. In conclusion, our study demonstrates therapeutic efficacy of [225Ac]Ac-PP-F11N without acute radiotoxicity in CCKBR-positive cancer model.
RESUMO
Rationale: A high tumor-to-healthy-tissue uptake ratio of radiolabeled ligands is an essential prerequisite for safe and effective peptide receptor radionuclide therapy (PRRT). In the present study, we searched for novel opportunities to increase tumor-specific uptake of the radiolabeled minigastrin analogue [177Lu]Lu-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2 ([177Lu]Lu-PP-F11N), that targets the cholecystokinin B receptor (CCKBR) in human cancers. Methods: A kinase inhibitor library screen followed by proliferation and internalization assays were employed to identify compounds which can increase uptake of [177Lu]Lu-PP-F11N in CCKBR-transfected human epidermoid carcinoma A431 cells and natural CCKBR-expressing rat pancreatic acinar AR42J cells. Western blot (WB) analysis verified the inhibition of the signaling pathways and the CCKBR level, whereas the cell-based assay analyzed arrestin recruitment. Biodistribution and SPECT imaging of the A431/CCKBR xenograft mouse model as well as histological analysis of the dissected tumors were used for in vivo validation. Results: Our screen identified the inhibitors of mammalian target of rapamycin complex 1 (mTORC1), which increased cell uptake of [177Lu]Lu-PP-F11N. Pharmacological mTORC1 inhibition by RAD001 and metformin increased internalization of [177Lu]Lu-PP-F11N in A431/CCKBR and in AR42J cells. Analysis of protein lysates from RAD001-treated cells revealed increased levels of CCKBR (2.2-fold) and inhibition of S6 phosphorylation. PP-F11N induced recruitment of ß-arrestin1/2 and ERK1/2 phosphorylation. In A431/CCKBR-tumor bearing nude mice, 3 or 5 days of RAD001 pretreatment significantly enhanced tumor-specific uptake of [177Lu]Lu-PP-F11N (ratio [RAD001/Control] of 1.56 or 1.79, respectively), whereas metformin treatment did not show a significant difference. Quantification of SPECT/CT images confirmed higher uptake of [177Lu]Lu-PP-F11N in RAD001-treated tumors with ratios [RAD001/Control] of average and maximum concentration reaching 3.11 and 3.17, respectively. HE staining and IHC of RAD001-treated tumors showed a significant increase in necrosis (1.4% control vs.10.6% of necrotic area) and the reduction of proliferative (80% control vs. 61% of Ki67 positive cells) and mitotically active cells (1.08% control vs. 0.75% of mitotic figures). No significant difference in the tumor vascularization was observed after five-day RAD001 or metformin treatment. Conclusions: Our data demonstrates, that increased CCKBR protein level by RAD001 pretreatment has the potential to improve tumor uptake of [177Lu]Lu-PP-F11N and provides proof-of-concept for the development of molecular strategies aimed at enhancing the level of the targeted receptor, to increase the efficacy of PRRT and nuclear imaging.
Assuntos
Quimiorradioterapia/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias/terapia , Fragmentos de Peptídeos/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Everolimo/farmacologia , Everolimo/uso terapêutico , Feminino , Gastrinas/genética , Gastrinas/farmacologia , Gastrinas/uso terapêutico , Humanos , Lutécio , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/uso terapêutico , Radioisótopos , Compostos Radiofarmacêuticos/uso terapêutico , Ratos , Receptor de Colecistocinina B/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Antibody-based therapeutics targeting CNS antigens emerge as promising treatments in neurology. However, access to the CNS is limited by the blood-brain barrier. We examined the effects of a neurite growth-enhancing anti-Nogo A antibody therapy following 3 routes of administration-intrathecal (i.t.), intravenous (i.v.), and subcutaneous (s.c.)-after large photothrombotic strokes in adult rats. Intrathecal treatment of full-length IgG anti-Nogo A antibodies enhanced recovery of the grasping function, but intravenous or subcutaneous administration had no detectable effect in spite of large amounts of antibodies in the peripheral circulation. Thus, in contrast to intravenous and subcutaneous delivery, intrathecal administration is an effective and reliable way to target CNS antigens. Our data reveal that antibody delivery to the CNS is far from trivial. While intrathecal application is feasible and guarantees defined antibody doses in the effective range for a biological function, the identification and establishment of easier routes of administration remains an important task to facilitate antibody-based future therapies of CNS disorders.
Assuntos
Anticorpos/administração & dosagem , Fármacos do Sistema Nervoso Central/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Proteínas Nogo/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Administração Intravenosa , Animais , Anticorpos/metabolismo , Fármacos do Sistema Nervoso Central/metabolismo , Feminino , Injeções Espinhais , Injeções Subcutâneas , Proteínas Nogo/metabolismo , Ratos , Ratos Long-Evans , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo , Resultado do TratamentoRESUMO
The majority of stroke patients develop post-stroke fatigue, a symptom which impairs motivation and diminishes the success of rehabilitative interventions. We show that large cortical strokes acutely reduce activity levels in rats for 1-2 weeks as a physiological response paralleled by signs of systemic inflammation. Rats were exposed early (1-2 weeks) or late (3-4 weeks after stroke) to an individually monitored enriched environment to stimulate self-controlled high-intensity sensorimotor training. A group of animals received Anti-Nogo antibodies for the first two weeks after stroke, a neuronal growth promoting immunotherapy already in clinical trials. Early exposure to the enriched environment resulted in poor outcome: Training intensity was correlated to enhanced systemic inflammation and functional impairment. In contrast, animals starting intense sensorimotor training two weeks after stroke preceded by the immunotherapy revealed better recovery with functional outcome positively correlated to the training intensity and the extent of re-innervation of the stroke denervated cervical hemi-cord. Our results suggest stroke-induced fatigue as a biological purposeful reaction of the organism during neuronal remodeling, enabling new circuit formation which will then be stabilized or pruned in the subsequent rehabilitative training phase. However, intense training too early may lead to wrong connections and is thus less effective.
Assuntos
Fadiga/fisiopatologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Fadiga/etiologia , Fadiga/reabilitação , Feminino , Inflamação/etiologia , Inflamação/fisiopatologia , Plasticidade Neuronal , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicaçõesRESUMO
L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were â¼5-10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of 15N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood-brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper.
Assuntos
Barreira Hematoencefálica/metabolismo , Líquido Extracelular/metabolismo , Glutamina/metabolismo , Homeostase , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Aminoácidos Cíclicos/farmacologia , Animais , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microdiálise , beta-Alanina/análogos & derivados , beta-Alanina/farmacologiaRESUMO
Glutamate transmission and synaptic plasticity in the amygdala are essential for the learning and expression of conditioned fear. Glutamate activates both ionotropic glutamate receptors and eight subtypes of metabotropic glutamate receptors (mGlu1-8). In the present study, we investigated the roles of mGlu7 and mGlu8 in amygdala-dependent behavior and synaptic plasticity. We show that ablation of mGlu7 but not mGlu8 attenuates long-term potentiation (LTP) at thalamo-lateral amygdala (LA) synapses where a strong association between LTP and learning has been demonstrated. mGlu7-deficient mice express a general deficit in conditioned fear whereas mGlu8-deficient mice show a dramatic reduction in contextual fear. The mGlu7 agonist AMN082 reduced thalamo-LA LTP and intra-amygdala administration blocked conditioned fear learning. In contrast, the mGlu8 agonist DCPG decreased synaptic transmission but not LTP at thalamo-LA synapses. Intra-amygdala DCPG selectively reduced the expression of contextual fear but did not affect the acquisition and expression of cued fear. Taken together, these data revealed very different roles for mGlu7 and mGlu8 in amygdala synaptic transmission, fear learning and its expression. These receptors seem promising targets for treating anxiety disorders with different underlying pathologies with exaggerated fear learning (mGlu7) or contextual fear (mGlu8).
Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Biofísica , Condicionamento Psicológico/efeitos dos fármacos , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Movimento/efeitos dos fármacos , Movimento/fisiologia , Receptores de Glutamato Metabotrópico/deficiência , Fatores de TempoRESUMO
STUDY OBJECTIVES: Orexin peptides activate orexin 1 and orexin 2 receptors (OX(1)R and OX(2)R), regulate locomotion and sleep-wake. The dual OX(1)R/OX(2)R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. DESIGN: Mice lacking orexin receptors were used to determine the contribution of OX(1)R and OX(2)R to orexin A-induced locomotion and to almorexant-induced sleep. SETTING: N/A. PATIENTS OR PARTICIPANTS: C57BL/6J mice and OX(1)R(+/+), OX(1)R(-/-), OX(2)R(+/+), OX(2)R(-/-) and OX(1)R(-/-)/OX(2)R(-/-) mice. INTERVENTIONS: Intracerebroventricular orexin A; oral dosing of almorexant. MEASUREMENTS AND RESULTS: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX(1)R(-/-)/OX(2)R(-/-) mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX(2)R(-/-) mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX(1)R(-/-)/OX(2)R(-/-) mice. Almorexant dissociates very slowly from OX(2)R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX(2)R selective. CONCLUSIONS: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX(2)R activation mediates locomotion induction by orexin A and antagonism of OX(2)R is sufficient to promote sleep in mice.
Assuntos
Acetamidas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Isoquinolinas/farmacologia , Locomoção/efeitos dos fármacos , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sono/efeitos dos fármacos , Simpatomiméticos/farmacologia , Animais , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologiaRESUMO
The present study investigated the phenotype of heterozygous and homozygous neuropeptide S receptor (Npsr) deficient C57BL/6 mice in NPS- and cocaine induced hyperactivity, spontaneous and reactive locomotor activity, elevated plus maze, conditioned fear, and prepulse inhibition of the acoustic startle response. In Npsr-deficient mice, a strong reduction of spontaneous locomotor activity and of the startle magnitude was observed; heterozygous mice had an intermediate phenotype. In the other experiments, Npsr deficiency leads to no or only a very modest phenotype. These results support an important role of neuropeptide S in regulating locomotor activity.
Assuntos
Atividade Motora/genética , Receptores Acoplados a Proteínas G/fisiologia , Reflexo de Sobressalto/genética , Estimulação Acústica , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Resposta de Imobilidade Tônica/fisiologia , Infusões Intraventriculares , Inibição Psicológica , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neuropeptídeos/administração & dosagem , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologiaRESUMO
Injections of neuropeptide S (NPS) into the lateral ventricle induce a strong hyperactivity. Since most behavioral paradigms are dependent of spontaneous locomotor activity, this makes it difficult to interpret the role of NPS in such paradigms. The aim of the present experiment was to investigate the effects of NPS in fear-potentiated startle, a behavioral fear paradigm which we believe is less sensitive to general changes in locomotor activity. Furthermore, NPS was directly injected into the amygdala, the central site of the neural fear circuitry. Our data shows that intra-amygdala NPS injections dose-dependently block the expression of conditioned fear and that this effect is independent of NPS effects on locomotor activity. This strongly supports a crucial role of amygdaloid NPS in conditioned fear.
Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Reflexo de Sobressalto/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos DBA , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Reflexo de Sobressalto/fisiologiaRESUMO
RATIONALE: Neuropeptide Y (NPY) and its receptors are densely localized in brain regions involved in the mediation and modulation of fear, including the amygdala. Several studies showed that central NPY is involved in the modulation of fear and anxiety. OBJECTIVES: In the present study, we investigated (1) whether intra-amygdala injections of NPY affect the expression of conditioned fear and (2) whether NPY Y1 receptors (Y1R) mediates the effects of these intra-amygdaloid NPY injections. RESULTS: Intra-amygdala NPY injections robustly decreased the expression of conditioned fear measured by conditioned freezing and fear-potentiated startle. These NPY effects were not mimicked by intra-amygdala injections of the Y1R agonists Y-28 or Y-36, and co-infusion of the Y1R antagonist BIBO 3304 did not block the NPY effects. Furthermore, we tested Y1R-deficient mice in conditioned freezing and found no differences between wild type and mutant littermates. Finally, we injected NPY into the amygdala of Y1R-deficient mice. Y1R deficiency had no effect on the fear-reducing effects of intra-amygdala NPY. CONCLUSIONS: These data show an important role of the transmitter NPY within the amygdala for the expression of conditioned fear. Y1R do not appear to be involved in the mediation of the observed intra-amygdala NPY effects suggesting that these effects are mediated via other NPY receptors.
Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Análise de Variância , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Animais , Neuropeptídeo Y/deficiência , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Fatores de TempoRESUMO
We studied the effects of the positive allosteric modulator GS39783 on GABA(B) receptors at a biochemical level in vivo. Changes in extracellular levels of cyclic AMP following GABA(B) receptor activation were monitored in the striatum of freely moving rats using microdialysis. Locally applied GABA(B) agonist R(-)-baclofen inhibited cyclic AMP formation stimulated by a water-soluble forskolin analogue in a concentration-dependent manner (EC50 7.3 microM, maximal inhibition 40%). The selective GABA(B) antagonist CGP56999 reversed R(-)-baclofen-induced cyclic AMP inhibition to control levels, but not higher. Orally applied GS39783 lacked effects on its own but, together with a threshold concentration of R(-)-baclofen (1 microM), significantly decreased cyclic AMP formation in a dose-dependent fashion. Effects of GS39783 were revoked with CGP56999, showing dependence on GABA(B) receptor activation and suggesting allosteric modulation as a mechanism of action in vivo. Administered with a maximally active dose of R(-)-baclofen, GS39783 failed to further inhibit cyclic AMP formation. The data obtained with CGP56999 and the lack of effect of GS39783 alone suggest that there is no detectable endogenous activation of GABA(B) receptors controlling cyclic AMP formation in rat striatum. To our knowledge, these results provide the first biochemical demonstration of in vivo activity of a G protein-coupled receptor-positive allosteric modulator.