Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(47): e2304730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480188

RESUMO

High-performance optoelectronic nonvolatile memory is promising candidate for next-generation information memory devices. Here, a floating-gate memory is constructed based on van der Waals heterostructure, which exhibits a large storage window ratio (≈75.5%) and an extremely high on/off ratio (107 ), as well as an ultrafast electrical writing/erasing speed (40 ns). The enhanced performance enables as-fabricated devices to present excellent multilevel data storage, robust retention, and endurance performance. Moreover, stable optical erasing operations can be achieved by illuminating the device with a laser pulse, showcasing outstanding optoelectronic storage performance (optical erasing speed ≈ 2.3 ms). The nonvolatile and high-speed characteristics of these devices hold significant potential for the integration of high-performance nonvolatile memory.

2.
Small ; 16(3): e1906185, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859416

RESUMO

Metal halide perovskite has attracted enhanced interest for its diverse electronic and optoelectronic applications. However, the fabrication of micro- or nanoscale crystalline perovskite functional devices remains a great challenge due to the fragility, solvent, and heat sensitivity of perovskite crystals. Here, a strategy is proposed to fabricate electronic and optoelectronic devices by directly growing perovskite crystals on microscale metallic structures in liquid phase. The well-contacted perovskite/metal interfaces ensure these heterostructures serve as high-performance field effect transistors (FETs) and excellent photodetector devices. When serving as an FET, the on/off ratio is as large as 106 and the mobility reaches up to ≈2.3 cm2 V-1 s-1 . A photodetector is displayed with high photoconductive switching ratio of ≈106 and short response time of ≈4 ms. Furthermore, the photoconductive response is proved to be band-bending-assisted separation of photoexcited carriers at the Schottky barrier of the silver and p-type perovskites.

3.
ACS Appl Mater Interfaces ; 12(28): 31776-31782, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32567297

RESUMO

Memory devices based on lead halide perovskite have attracted great interests because of their unique current-voltage hysteresis. However, current memory devices based on polycrystalline perovskites usually suffer from large intrinsic electronic current and parasitic leakage current due to the existence of grain boundaries, which further leads to high power consumption. Here, a low-power resistance switching random-access memory device is demonstrated by assembling single-crystalline CsPbBr3 on Ag electrodes. The assembled structure serves as a bipolar nonvolatile resistance switching memory device with a low program current (∼10 nA), good endurance, long data retention (>103 S), and big on/off ratio of ∼103. The low program current results in a power of ∼3 × 10-8 W, which is much lower than that of polycrystalline perovskite-based devices (10-1-10-6 W). It is found that the formation and annihilation of Ag and bromide vacancy conductive filaments contribute to the significant resistive switching effect. At a low resistive state, the conductive filaments originate from the accumulation of Br- ions at the drain. Furthermore, the conductive filaments are proved to be a cone shape, shrinking from the drain to the source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA