Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Semin Cell Dev Biol ; 140: 82-89, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35659473

RESUMO

Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.


Assuntos
Espinhas Dendríticas , Transmissão Sináptica , Espinhas Dendríticas/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia
2.
J Biol Chem ; 299(5): 104687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044214

RESUMO

Axon pathfinding is an essential step in neuronal network formation. Shootin1a is a clutch-linker molecule that is mechanically involved in axon outgrowth and guidance. It was previously shown that concentration gradients of axon guidance molecule netrin-1 in the extracellular environment elicit asymmetrically localized Pak1 kinase-mediated phosphorylation of shootin1a within axonal growth cones, which is higher on the netrin-1 source side. This asymmetric phosphorylation promotes shootin1a-mediated local actin-adhesion coupling within growth cones, thereby generating directional forces for turning the growth cone toward the netrin-1 source. However, how the spatial differences in netrin-1 concentration are transduced into the asymmetrically localized signaling within growth cones remains unclear. Moreover, the protein phosphatases that dephosphorylate shootin1a remain unidentified. Here, we report that protein phosphatase-1 (PP1) dephosphorylates shootin1a in growth cones. We found that PP1 overexpression abolished the netrin-1-induced asymmetric localization of phosphorylated shootin1a as well as axon turning. In addition, we show PP1 inhibition reversed the asymmetrically localized shootin1a phosphorylation within growth cones under netrin-1 gradient, thereby changing the netrin-1-induced growth cone turning from attraction to repulsion. These data indicate that PP1-mediated shootin1a dephosphorylation plays a key role in organizing asymmetrically localized phosphorylated shootin1a within growth cones, which regulates netrin-1-induced axon guidance.


Assuntos
Orientação de Axônios , Proteínas do Tecido Nervoso , Netrina-1 , Proteína Fosfatase 1 , Animais , Camundongos , Axônios/metabolismo , Células Cultivadas , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrina-1/metabolismo , Proteína Fosfatase 1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Biophys J ; 122(23): 4542-4554, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37915171

RESUMO

Understanding the principles of cell migration necessitates measurements of the forces generated by cells. In traction force microscopy (TFM), fluorescent beads are placed on a substrate's surface and the substrate strain caused by the cell traction force is observed as displacement of the beads. Mathematical analysis can estimate traction force from bead displacement. However, most algorithms estimate substrate stresses independently of cell boundary, which results in poor estimation accuracy in low-density bead environments. To achieve accurate force estimation at low density, we proposed a Bayesian traction force estimation (BTFE) algorithm that incorporates cell-boundary-dependent force as a prior. We evaluated the performance of the proposed algorithm using synthetic data generated with mathematical models of cells and TFM substrates. BTFE outperformed other methods, especially in low-density bead conditions. In addition, the BTFE algorithm provided a reasonable force estimation using TFM images from the experiment.


Assuntos
Fenômenos Mecânicos , Tração , Teorema de Bayes , Microscopia de Força Atômica/métodos , Modelos Teóricos
4.
Biophys J ; 120(17): 3566-3576, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34384760

RESUMO

Mechanical properties of the extracellular environment modulate axon outgrowth. Growth cones at the tip of extending axons generate traction force for axon outgrowth by transmitting the force of actin filament retrograde flow, produced by actomyosin contraction and F-actin polymerization, to adhesive substrates through clutch and cell adhesion molecules. A molecular clutch between the actin filament flow and substrate is proposed to contribute to cellular mechanosensing. However, the molecular identity of the clutch interface responsible for mechanosensitive growth cone advance is unknown. We previously reported that mechanical coupling between actin filament retrograde flow and adhesive substrates through the clutch molecule shootin1a and the cell adhesion molecule L1 generates traction force for axon outgrowth and guidance. Here, we show that cultured mouse hippocampal neurons extend longer axons on stiffer substrates under elastic conditions that correspond to the soft brain environments. We demonstrate that this stiffness-dependent axon outgrowth requires actin-adhesion coupling mediated by shootin1a, L1, and laminin on the substrate. Speckle imaging analyses showed that L1 at the growth cone membrane switches between two adhesive states: L1 that is immobilized and that undergoes retrograde movement on the substrate. The duration of the immobilized phase was longer on stiffer substrates; this was accompanied by increases in actin-adhesion coupling and in the traction force exerted on the substrate. These data suggest that the interaction between L1 and laminin is enhanced on stiffer substrates, thereby promoting force generation for axon outgrowth.


Assuntos
Cones de Crescimento , Laminina , Actinas , Animais , Axônios , Células Cultivadas , Camundongos , Crescimento Neuronal
5.
Proc Natl Acad Sci U S A ; 115(11): 2764-2769, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483251

RESUMO

Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.


Assuntos
Quimiotaxia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Cones de Crescimento/metabolismo , Deficiência Intelectual/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Actinas/metabolismo , Axônios/química , Axônios/metabolismo , Movimento Celular , Doenças Genéticas Ligadas ao Cromossomo X/genética , Cones de Crescimento/química , Humanos , Deficiência Intelectual/genética , Laminina/química , Laminina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Paraplegia Espástica Hereditária/genética
6.
Bioconjug Chem ; 31(6): 1611-1615, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378884

RESUMO

Membrane curvature plays a pivotal role in cellular life, including cellular uptake and membrane trafficking. The modulation of membrane curvature provides a novel means of manipulating cellular events. In this report, we show that a nine-residue amphiphilic peptide (R6W3) stimulates endocytic uptake by inducing membrane curvature. Curvature formation on cell membranes was confirmed by observing the cellular distribution of the curvature-sensing protein amphiphysin fused with a yellow fluorescent protein (Amp-YFP). Dot-like signals of Amp-YFP were visible following the addition of R6W3, suggesting curvature formation in cell membranes, leading to endocytic cup and vesicle formation. The promotion of endocytic uptake was confirmed using the endocytosis marker polydextran. Treatment of cells with R6W3 yielded a 4-fold dextran uptake compared with untreated cells. The amphiphilic helical structure of R6W3 was also crucial for R6W3-stimulated endocytic uptake.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Bactérias/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo
7.
Cell Tissue Res ; 366(1): 75-87, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27177867

RESUMO

Shootin1 is a brain-specific cytoplasmic protein involved in neuronal polarity formation and axon outgrowth. It accumulates at the leading edge of axonal growth cones, where it mediates the mechanical coupling between F-actin retrograde flow and cell adhesions as a clutch molecule, thereby producing force for axon outgrowth. In this study, we report a novel splicing isoform of shootin1 which is expressed not only in the brain but also in peripheral tissues. We have renamed the brain-specific shootin1 as shootin1a and termed the novel isoform as shootin1b. Immunoblot and immunohistochemical analyses with a shootin1b-specific antibody revealed that shootin1b is distributed in various mouse tissues including the lung, liver, stomach, intestines, spleen, pancreas, kidney and skin. Interestingly, shootin1b immunoreactivity was widely detected in epithelial cells that constitute simple and stratified epithelia; in some cells, it colocalized with E-cadherin and cortactin at cell-cell contact sites. Shootin1b also localized in dendritic cells in the spleen. These results suggest that shootin1b may function in various peripheral tissues including epithelial cells.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Caderinas/metabolismo , Comunicação Celular , Cortactina/metabolismo , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Isoformas de Proteínas , Transporte Proteico , Ratos , Distribuição Tecidual
8.
EMBO J ; 30(13): 2734-47, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21642953

RESUMO

Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported ß-ß associations found in radixin-adhesion molecule complexes. We also revealed direct interactions between the MyTH4-FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules.


Assuntos
Miosinas/química , Miosinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Células Cultivadas , Receptor DCC , Humanos , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Miosinas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Front Mol Neurosci ; 17: 1307755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375502

RESUMO

The growth cone, a motile structure located at the tip of growing axons, senses extracellular guidance cues and translates them into directional forces that drive axon outgrowth and guidance. Axon guidance directed by chemical cues on the extracellular adhesive substrate is termed haptotaxis. Recent studies reported that netrin-1 on the substrate functions as a haptotactic axon guidance cue. However, the mechanism mediating netrin-1-induced axonal haptotaxis remains unclear. Here, we demonstrate that substrate-bound netrin-1 induces axonal haptotaxis by facilitating physical interactions between the netrin-1 receptor, DCC, and the adhesive substrates. DCC serves as an adhesion receptor for netrin-1. The clutch-linker molecule shootin1a interacted with DCC, linking it to actin filament retrograde flow at the growth cone. Speckle imaging analyses showed that DCC underwent either grip (stop) or retrograde slip on the adhesive substrate. The grip state was more prevalent on netrin-1-coated substrate compared to the control substrate polylysine, thereby transmitting larger traction force on the netrin-1-coated substrate. Furthermore, disruption of the linkage between actin filament retrograde flow and DCC by shootin1 knockout impaired netrin-1-induced axonal haptotaxis. These results suggest that the directional force for netrin-1-induced haptotaxis is exerted on the substrates through the adhesion-clutch between DCC and netrin-1 which occurs asymmetrically within the growth cone.

10.
J Neurosci ; 32(37): 12712-25, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22972995

RESUMO

Axon outgrowth requires plasma membrane expansion, which results from post-Golgi vesicular transport and fusion. However, the molecular mechanisms regulating post-Golgi vesicular trafficking for membrane expansion and axon outgrowth remain unclear. Here, we show that Rab33a expression became upregulated during axon outgrowth of cultured rat hippocampal neurons. Rab33a was preferentially localized to the Golgi apparatus and to synaptophysin-positive vesicles that are transported along the growing axon. Previous studies showed that synaptophysin is localized to post-Golgi vesicles transported by fast axonal transport in developing neurons. Reduction of Rab33a expression by RNAi (RNA interference) inhibited the anterograde transport of synaptophysin-positive vesicles, leading to their decrease in axonal tips. Furthermore, this treatment reduced membrane fusion of synaptophysin-positive vesicles at the growth cones and inhibited axon outgrowth. Overexpression of Rab33a, on the other hand, induced excessive accumulation of synaptophysin-positive vesicles and concurrent formation of surplus axons. These data suggest that Rab33a participates in axon outgrowth by mediating anterograde axonal transport of synaptophysin-positive vesicles and their concomitant fusion at the growth cones.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Membrana Celular/fisiologia , Exocitose/fisiologia , Hipocampo/fisiologia , Vesículas Transportadoras/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axônios/ultraestrutura , Crescimento Celular , Complexo de Golgi/fisiologia , Complexo de Golgi/ultraestrutura , Hipocampo/citologia , Neurônios/citologia , Neurônios/fisiologia , Ratos
11.
Planta ; 233(5): 947-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21259065

RESUMO

Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.


Assuntos
Citrullus/metabolismo , Secas , Proteínas de Choque Térmico/biossíntese , Proteínas de Plantas/biossíntese , Proteoma/metabolismo , Adaptação Ocular/fisiologia , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Citrullus/genética , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Análise de Sequência de Proteína , Ativação Transcricional
12.
Mol Syst Biol ; 6: 394, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20664640

RESUMO

Although there has been significant progress in understanding the molecular signals that change cell morphology, mechanisms that cells use to monitor their size and length to regulate their morphology remain elusive. Previous studies suggest that polarizing cultured hippocampal neurons can sense neurite length, identify the longest neurite, and induce its subsequent outgrowth for axonogenesis. We observed that shootin1, a key regulator of axon outgrowth and neuronal polarization, accumulates in neurite tips in a neurite length-dependent manner; here, the property of cell length is translated into shootin1 signals. Quantitative live cell imaging combined with modeling analyses revealed that intraneuritic anterograde transport and retrograde diffusion of shootin1 account for its neurite length-dependent accumulation. Our quantitative model further explains that the length-dependent shootin1 accumulation, together with shootin1-dependent neurite outgrowth, constitutes a positive feedback loop that amplifies stochastic fluctuations of shootin1 signals, thereby generating an asymmetric signal for axon specification and neuronal symmetry breaking.


Assuntos
Forma Celular , Tamanho Celular , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Animais , Polaridade Celular , Células Cultivadas , Difusão , Retroalimentação Fisiológica , Cones de Crescimento/metabolismo , Hipocampo/embriologia , Cinesinas/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Neurológicos , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
13.
Nat Cell Biol ; 4(8): 583-91, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134159

RESUMO

Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.


Assuntos
Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Linhagem Celular , Chlorocebus aethiops , Dimerização , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde , Hipocampo/metabolismo , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Proteínas Luminescentes/metabolismo , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/química , Células Vero
14.
J Cell Biol ; 175(1): 147-57, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17030985

RESUMO

Neurons have the remarkable ability to polarize even in symmetrical in vitro environments. Although recent studies have shown that asymmetric intracellular signals can induce neuronal polarization, it remains unclear how these polarized signals are organized without asymmetric cues. We describe a novel protein, named shootin1, that became up-regulated during polarization of hippocampal neurons and began fluctuating accumulation among multiple neurites. Eventually, shootin1 accumulated asymmetrically in a single neurite, which led to axon induction for polarization. Disturbing the asymmetric organization of shootin1 by excess shootin1 disrupted polarization, whereas repressing shootin1 expression inhibited polarization. Overexpression and RNA interference data suggest that shootin1 is required for spatially localized phosphoinositide-3-kinase activity. Shootin1 was transported anterogradely to the growth cones and diffused back to the soma; inhibiting this transport prevented its asymmetric accumulation in neurons. We propose that shootin1 is involved in the generation of internal asymmetric signals required for neuronal polarization.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Sequência de Aminoácidos , Animais , Polaridade Celular , Regulação da Expressão Gênica , Cones de Crescimento/metabolismo , Hipocampo/citologia , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteômica , Ratos , Alinhamento de Sequência
15.
STAR Protoc ; 2(4): 100904, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34723214

RESUMO

Dendritic spine enlargement by synaptic activation is thought to increase synaptic efficacy underlying learning and memory. This process requires forces generated by actin polymerization and actin-adhesion coupling (clutch coupling). Here, we describe a protocol to monitor actin filament retrograde flow and actin polymerization within spines using a standard epi-fluorescence microscope. In combination with chemical long-term potentiation, this protocol allows us to quantify clutch coupling efficiency and actin polymerization rate, which are essential variables for generating forces for activity-dependent spine enlargement. For complete details on the use and execution of this protocol, please refer to Kastian et al. (2021).


Assuntos
Actinas/metabolismo , Espinhas Dendríticas , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Neurofisiologia/métodos , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/química , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Camundongos , Polimerização
16.
J Vis Exp ; (176)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34747402

RESUMO

To establish functional networks, neurons must migrate to their appropriate destinations and then extend axons toward their target cells. These processes depend on the advances of growth cones that located at the tips of neurites. Axonal growth cones generate driving forces by sensing their local microenvironment and modulating cytoskeletal dynamics and actin-adhesion coupling (clutch coupling). Decades of research have led to the identification of guidance molecules, their receptors, and downstream signaling cascades for regulating neuronal migration and axonal guidance; however, the molecular machineries required for generating forces to drive growth cone advance and navigation are just beginning to be elucidated. At the leading edge of neuronal growth cones, actin filaments undergo retrograde flow, which is powered by actin polymerization and actomyosin contraction. A clutch coupling between F-actin retrograde flow and adhesive substrate generates traction forces for growth cone advance. The present study describes a detailed protocol for monitoring F-actin retrograde flow by single speckle imaging. Importantly, when combined with an F-actin marker Lifeact, this technique can quantify 1) the F-actin polymerization rate and 2) the clutch coupling efficiency between F-actin retrograde flow and the adhesive substrate. Both are critical variables for generating forces for growth cone advance and navigation. In addition, the present study describes a detailed protocol of traction force microscopy, which can quantify 3) traction force generated by growth cones. Thus, by coupling the analyses of single speckle imaging and traction force microscopy, investigators can monitor the molecular mechanics underlying growth cone advance and navigation.


Assuntos
Actinas , Cones de Crescimento , Citoesqueleto de Actina , Axônios , Células Cultivadas , Tração
17.
Cell Rep ; 35(7): 109130, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010643

RESUMO

Dendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines. However, the molecular machinery that suffices for that structural plasticity remains unclear. Here, we demonstrate that shootin1a links polymerizing actin filaments in spines with the cell-adhesion molecules N-cadherin and L1-CAM, thereby mechanically coupling the filaments to the extracellular environment. Synaptic activation enhances shootin1a-mediated actin-adhesion coupling in spines. Promotion of actin polymerization is insufficient for the plasticity; the enhanced actin-adhesion coupling is required for polymerizing actin filaments to push against the membrane for spine enlargement. By integrating cell signaling, cell adhesion, and force generation into the current model of actin-based machinery, we propose molecular machinery that is sufficient to trigger the activity-dependent spine structural plasticity.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Actinas/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Humanos , Camundongos , Plasticidade Neuronal
18.
Front Cell Dev Biol ; 8: 863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984342

RESUMO

To establish and maintain proper brain architecture and elaborate neural networks, neurons undergo massive migration. As a unique feature of their migration, neurons move in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. Neurons must therefore generate forces to extend the leading process as well as to translocate the cell body. In addition, neurons need to switch these forces alternately in order to orchestrate their saltatory movement. Recent studies with mechanobiological analyses, including traction force microscopy, cell detachment analyses, live-cell imaging, and loss-of-function analyses, have begun to reveal the forces required for these steps and the molecular mechanics underlying them. Spatiotemporally organized forces produced between cells and their extracellular environment, as well as forces produced within cells, play pivotal roles to drive these neuronal migration steps. Traction force produced by the leading process growth cone extends the leading processes. On the other hand, mechanical tension of the leading process, together with reduction in the adhesion force at the rear and the forces to drive nucleokinesis, translocates the cell body. Traction forces are generated by mechanical coupling between actin filament retrograde flow and the extracellular environment through clutch and adhesion molecules. Forces generated by actomyosin and dynein contribute to the nucleokinesis. In addition to the forces generated in cell-intrinsic manners, external forces provided by neighboring migratory cells coordinate cell movement during collective migration. Here, we review our current understanding of the forces that drive neuronal migration steps and describe the molecular machineries that generate these forces for neuronal migration.

19.
Sci Rep ; 9(1): 1799, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755680

RESUMO

Rab small GTPases play key roles in intracellular membrane trafficking. Rab33a promotes axon outgrowth of cultured rat hippocampal neurons by mediating the anterograde axonal transport of Golgi-derived vesicles and the concomitant exocytosis of these vesicles at the growth cone. However, the functions of Rab33 in vivo are unclear. Here, we show that zebrafish rab33a and rab33ba are orthologs of mammalian Rab33a and Rab33b, respectively. They are expressed in the developing brain, including in neurons of the telencephalic dorsorostral cluster and the diencephalic ventrorostral cluster, which project axons to form the anterior and postoptic commissures, respectively. Although rab33a single mutant and rab33ba single mutant fish did not show remarkable defects, fish carrying the rab33a;rab33ba double mutations displayed dysgenesis of the anterior and postoptic commissures. Single-cell labeling in the telencephalic dorsorostral cluster demonstrated that the rab33a;rab33ba double mutation inhibits axonal extension in the anterior commissure. These results suggest that Rab33a and Rab33ba mediate axon outgrowth and the formation of the forebrain commissures in the zebrafish brain in a cooperative manner.


Assuntos
Axônios/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurônios/metabolismo , Comissuras Telencefálicas/citologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Mutação/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA