Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 89(7): 3746-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609805

RESUMO

UNLABELLED: Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥ 1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤ 1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE: H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Animais , Variação Antigênica , Galinhas , Deriva Genética , Indonésia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
2.
Avian Pathol ; 45(4): 478-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27009612

RESUMO

A peptide enzyme linked immunosorbent assay (ELISA) based on an epitope in the haemagglutinin (HA) of avian influenza virus H5N1, amino acid positions 274-288 (HA274-288) was evaluated for detection of H5N1-specific antibodies. An optimized ELISA based on the tetrameric form of the HA274-288 epitope designated MP15 gave low background with non-immune chicken sera and detected vaccinated and infected birds. The HA274-288 epitope was highly conserved in Indonesian H5N1 strains and antibody responses were detected in the majority of the vaccinated chickens regardless of the H5N1 strain used for vaccination. The HA274-288 epitope was also conserved in the majority of H5N1 strains from the neighbouring Asian region, and other H5 subtypes potentially allowing for a wider use of the MP15 ELISA in H5N1 vaccinated and infected flocks. The MP15 ELISA results correlated significantly with haemagglutination inhibition (HI) test results and test sensitivity and specificity were 87% and 92%, respectively. The MP15 ELISA titres were significantly higher than the HI titres in all immune sera allowing for sera to be tested at a single dilution of 1:400 which is of advantage in routine surveillance. The study indicated that the MP15 ELISA is potentially useful for serological detection of H5N1 vaccinated or infected poultry and to have some advantages over the standard HI test for routine monitoring of flocks' immunity after vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Galinhas/virologia , Epitopos/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Testes de Inibição da Hemaglutinação/veterinária , Indonésia/epidemiologia , Influenza Aviária/virologia , Aves Domésticas , Doenças das Aves Domésticas/virologia , Sensibilidade e Especificidade , Vacinação/veterinária
3.
Avian Pathol ; 44(4): 259-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915110

RESUMO

A surveillance method able to differentiate between vaccinated and infected poultry is required for those countries that practice vaccination against highly pathogenic avian influenza H5N1. The external domain of the M2 protein (M2e) of influenza virus is a potentially useful differentiating-infected from vaccinated animals (DIVA) antigen but little is known about the M2e antibody response and factors influencing its detection. In this study, the M2e antibody response was characterized in layer birds vaccinated and challenged with an Indonesian H5N1 virus isolate, using a single M2e peptide or four-branched multiple antigenic peptide form of M2e (MAP-M2e) as antigens in two separate ELISAs. Anti-M2e antibodies were absent in chicks with high level of maternal haemagglutination inhibition antibodies and also in all layers vaccinated once, twice or three times with an inactivated commercial H5N1 vaccine. In contrast, anti-M2e antibodies were detected in vaccinated layers challenged with H5N1 virus and their presence was associated with virus isolation and an increase in haemagglutination inhibition titres. The number of birds that developed M2e antibodies, as well as the strength and duration of the M2e antibody response were strongly influenced by the length of the interval between vaccination and challenge. Birds challenged at six weeks after vaccination all developed M2e antibodies by 14 days that lasted until at least 56 days after infection. In birds challenged at two weeks after vaccination, only a proportion of birds developed M2e antibodies by 14 days that lasted only until 28 days post-infection. Both single M2e peptide and MAP-M2e ELISAs had high diagnostic specificity but the diagnostic sensitivity of MAP-M2e ELISA was significantly higher and more effective in detecting M2e antibody in immune and infected birds. The results show that MAP-M2e ELISA would be useful for surveillance in countries using vaccination to control highly pathogenic avian influenza H5N1.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Galinhas/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Animais , Galinhas/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vacinação/veterinária
4.
J Vet Sci ; 25(1): e3, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311318

RESUMO

The Newcastle disease virus (NDV) outbreak was first reported in Java Island, Indonesia, in 1926, which was then reported further in Newcastle-upon-Tyne, England. Nevertheless, the NDV is still endemic in Indonesia, with outbreaks occurring in free-range and commercial chicken farms. The dynamic evolution of the NDV has led to the further development of vaccines and diagnostic tools for more effective control of this virus. This paper discusses the history of the NDV occurrence, vaccines, the development of diagnostic tools, and the epidemiological condition of the NDV in Indonesia. Indonesia, which has the largest poultry population in the world after China, has challenges in preventing and controlling this virus that causes economic losses to the farmers and has an impact on the welfare of the poultry farming community in Indonesia.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle , Doença de Newcastle/epidemiologia , Doença de Newcastle/prevenção & controle , Indonésia/epidemiologia , Galinhas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
5.
J Vet Sci ; 22(6): e70, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34697920

RESUMO

Bats are an important reservoir of several zoonotic diseases. However, the circulation of bat coronaviruses (BatCoV) in live animal markets in Indonesia has not been reported. Genetic characterization of BatCoV was performed by sequencing partial RdRp genes. Real-time polymerase chain reaction based on nucleocapsid protein (N) gene and Enzyme-linked immunosorbent assay against the N protein were conducted to detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and antibody, respectively. We identified the presence of BatCoV on Cynopterus brachyotis, Macroglossus minimus, and Rousettus amplexicaudatus. The results showed that the BatCoV included in this study are from an unclassified coronavirus group. Notably, SARS-CoV-2 viral RNA and antibodies were not detected in the sampled bats.


Assuntos
Quirópteros/virologia , Coronavirus/classificação , Coronavirus/isolamento & purificação , Animais , Coronavirus/genética , DNA Viral/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Indonésia , Proteínas do Nucleocapsídeo/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Especificidade da Espécie
6.
Emerg Infect Dis ; 16(12): 1889-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21122218

RESUMO

To identify environmental sites commonly contaminated by avian influenza virus A (H5N1) in live-bird markets in Indonesia, we investigated 83 markets in 3 provinces in Indonesia. At each market, samples were collected from up to 27 poultry-related sites to assess the extent of contamination. Samples were tested by using real-time reverse transcription-PCR and virus isolation. A questionnaire was used to ascertain types of birds in the market, general infrastructure, and work practices. Thirty-nine (47%) markets showed contamination with avian influenza virus in ≥ 1 of the sites sampled. Risk factors were slaughtering birds in the market and being located in West Java province. Protective factors included daily removal of waste and zoning that segregated poultry-related work flow areas. These results can aid in the design of evidence-based programs concerning environmental sanitation, food safety, and surveillance to reduce the risk for avian influenza virus A (H5N1) transmission in live-bird markets.


Assuntos
Monitoramento Ambiental , Fômites/veterinária , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Matadouros , Animais , Comércio , Monitoramento Epidemiológico , Fômites/virologia , Indonésia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Aves Domésticas
7.
Vaccines (Basel) ; 8(3)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785201

RESUMO

Vaccination is one of the leading methods of controlling the spread of the Avian Influenza (AI) viruses in Indonesia. The variety of circulating viruses and their ability to mutate must be followed by updating the vaccine master seed used in the field. In this study, we identified the reassortant H9N2 viruses in chicken farms that showed significant problems in decreased egg production with high mortality. The reassortant H9N2 viruses derived the PB2 gene from the H5N1 virus. The pathogenicity test results of the reassortant virus showed various clinical signs of illness, a high mortality rate (10%), and decreased egg production down to 63.12% at two weeks post-infection. In a vaccine efficacy test, the vaccinated groups showed minimally decreased egg production that started to increase to more than 80% at 4-7 weeks post-challenge. Our study showed that inactivated bivalent and monovalent reassortant H9N2 vaccines can induce antibody response, reducing the mortality and virus shedding caused by reassortant H9N2 virus infection. The reassortant H9N2 virus is a threat that requires vigilance in poultry farms and the industry. The vaccines used in this study can be one of the options for control or prevention measures on farms infected with the reassortant H9N2 viruses.

8.
Microbiol Resour Announc ; 9(23)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499363

RESUMO

Here, we report two genomes of newly emerged strains of Newcastle disease virus (NDV), Chicken/Indonesia/Tangerang/004WJ/14 and Chicken/Indonesia/VD/003WJ/11, from disease outbreaks in chickens in Indonesia. Phylogenetic study results of the fusion (F) protein's gene-coding sequences of different genotypes of NDV revealed that these two strains belong to genotype VII.1 in the class II cluster of avian paramyxoviruses.

9.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499364

RESUMO

The genomes of two newly emerged Newcastle disease virus strains, chicken/Indonesia/Mega/001WJ/2013 and chicken/Indonesia/Cimanglid/002WJ/2015, from disease outbreaks in chickens in Indonesia are reported. Phylogenetic analysis of different genotypes of Newcastle disease virus using the F gene coding sequences suggests that these two strains belong to genotype VII.2, in class II of avian paramyxoviruses.

10.
Front Vet Sci ; 5: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671438

RESUMO

Whilst the serological responses of poultry following vaccination against highly pathogenic avian influenza H5N1 has been extensively investigated under laboratory conditions, there have been fewer studies conducted in the field. This applies particularly to the endemically infected countries routinely practicing vaccination, where the combination of multiple circulating clades and/or the use of vaccines with different seed strains makes the design and interpretation of field studies especially problematic. To address this for the particular situation of layer hens in the small to medium commercial sector in Indonesia, we developed a sampling regime before and after the vaccination given to point-of-lay pullets, and assessed serological response with a panel of test antigens. This confirmed that high titres were induced in those birds vaccinated with locally produced homologous H5N1 vaccines administered two or more times, but in flocks using imported heterologous H5N2 vaccines median titres were significantly lower, and unlikely to provide protection throughout the production cycle, without additional vaccination. Comparing the HI responses against the panel of antigens enabled the detection of the flock's exposure to different vaccine antigens, and made possible the detection of mislabelled vaccine seed strains. Furthermore, we show that test antigens need not be exactly matched to assess sero-protection in well vaccinated birds. Finally our study suggests that the POL vaccination serves as a useful reference point for following cohorts of layers throughout their production cycle, and thus enabling robust vaccination field effectiveness studies.

11.
PLoS One ; 13(1): e0190947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29320563

RESUMO

Although vaccination of poultry for control of highly pathogenic avian influenza virus (HPAIV) H5N1 has been practiced during the last decade in several countries, its effectiveness under field conditions remains largely unquantified. Effective HPAI vaccination is however essential in preventing incursions, silent infections and generation of new H5N1 antigenic variants. The objective of this study was to asses the level and duration of vaccine induced immunity in commercial layers in Indonesia. Titres of H5N1 haemagglutination inhibition (HI) antibodies were followed in individual birds from sixteen flocks, age 18-68 week old (wo). The study revealed that H5N1 vaccination had highly variable outcome, including vaccination failures, and was largely ineffective in providing long lasting protective immunity. Flocks were vaccinated with seven different vaccines, administer at various times that could be grouped into three regimes: In regime A, flocks (n = 8) were vaccinated two or three times before 19 wo; in regime B (n = 2), two times before and once after 19 wo; and in regime C (n = 6) three to four times before and two to three times after 19 wo. HI titres in regime C birds were significantly higher during the entire observation period in comparison to titres of regime A or B birds, which also differed significantly from each other. The HI titres of individual birds in each flock differed significantly from birds in other flocks, indicating that the effectiveness of field vaccination was highly variable and farm related. Protective HI titres of >4log2, were present in the majority of flocks at 18 wo, declined thereafter at variable rate and only two regime C flocks had protective HI titres at 68 wo. Laboratory challenge with HPAIV H5N1 of birds from regime A and C flocks confirmed that protective immunity differed significantly between flocks vaccinated by these two regimes. The study revealed that effectiveness of the currently applied H5N1 vaccination could be improved and measures to achieve this are discussed.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza , Influenza Aviária/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Criação de Animais Domésticos , Animais , Anticorpos Antivirais/sangue , Galinhas/imunologia , Galinhas/virologia , Testes de Inibição da Hemaglutinação , Indonésia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Influenza Aviária/virologia , Estudos Longitudinais , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Estudos Prospectivos , Falha de Tratamento
12.
J Virol Methods ; 249: 181-188, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843786

RESUMO

In countries where highly pathogenic avian influenza virus (HPAIV) H5N1 is endemic and controlled by vaccination, post-vaccination serological monitoring is essential to differentiate vaccinated poultry from those that are infected. The objectives of this study were to validate two experimental ELISAs that detect antibodies raised against the M2e protein of avian influenza virus that can be used for DIVA purposes. Results from the sM2e and tM2e ELISAs were compared with other conventional tests for the detection of H5N1influenza virus (virus isolation and RT-PCR) using samples collected from 16 commercial flocks in Indonesia. These comprised vaccinated layers aged between 18 and 68 weeks old that were sampled at ten-weekly intervals. A small number of sera were positive in sM2e and tM2e ELISA, 14 (0.6%) and 17 (0.7%) respectively, with low OD420 (0.1-0.3), but only 4 sera were positive in both tests. At the flock level, the incidence of M2e positive sera was low (4%), well below previously established minimum of 40% for an HPAIV H5N1-infected flock. Conventional M and H5 gene RT-PCRs indicated that none of 16 flocks were infected at any time during the study. No virus was isolated from any of the 480 pooled swab samples, except from one, for which the combined data analysis suggest to be the result of a laboratory cross-contamination. Clinical disease, mortalities or reduction in production performance, indicative of field H5N1 challenge, were not observed either in any of the flocks. Birds from two surveyed flocks, challenged in the laboratory with an Indonesian HPAIV H5N1 developed M2e antibodies in 50% and 55% of surviving birds with OD420 in the range of 0.35-1.47 in tM2e ELISA, confirming the validity of the criteria established for use of M2e ELISA for DIVA purposes. Overall these results showed that the tM2e ELISA could be a useful monitoring tool to ascertain freedom from H5N1 infections in vaccinated commercial poultry.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Vigilância Imunológica , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Animais , Indonésia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Aves Domésticas/imunologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinação/veterinária
14.
PLoS One ; 9(10): e108420, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330391

RESUMO

Killed avian influenza virus (AIV) vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA) in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e) of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e) for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006) was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Virus da Influenza A Subtipo H5N1/fisiologia , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Animais , Antígenos Virais/imunologia , Western Blotting , Galinhas/imunologia , Galinhas/virologia , Clonagem Molecular , Vetores Genéticos/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/sangue , Influenza Aviária/prevenção & controle , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
15.
PLoS One ; 8(2): e56801, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437243

RESUMO

Available avian influenza (AIV) serological diagnostic tests cannot distinguish vaccinated from naturally infected birds. Differentiation of vaccinated from infected animals (DIVA) is currently advocated as a means of achieving the full control of H5N1. In this study, for the first time, recombinant ectodomain of M2 protein (M2e) of avian influenza virus (H5N1 strain) was used for the DIVA serology test. M2e was cloned into pMAL-P4X vector and expressed in E. coli cells. We used Western blot to recognize the expressed M2e-MBP protein by chicken antisera produced against live H5N1 virus. Also, the specificity of M2e-MBP protein was compared to the M2e synthetic peptide via ELISA. In M2e-MBP ELISA, all sera raised against the live avian influenza viruses were positive for M2e antibodies, whereas sera from killed virus vaccination were negative. Furthermore, M2e-MBP ELISA of the field sera obtained from vaccinated and non-vaccinated chickens showed negative results, while challenged vaccinated chickens demonstrated strong positive reactions. H5N1-originated recombinant M2e protein induced broad-spectrum response and successfully reacted with antibodies against other AIV strains such as H5N2, H9N2, H7N7, and H11N6. The application of the recombinant protein instead of synthetic peptide has the advantages of continues access to an inexpensive reagent for performing a large scale screening. Moreover, recombinant proteins provide the possibility of testing the DIVA results with an additional technique such a Western blotting which is not possible in the case of synthetic proteins. All together, the results of the present investigation show that recombinant M2e-MBP can be used as a robust and inexpensive solution for DIVA test.


Assuntos
Ensaio de Imunoadsorção Enzimática , Virus da Influenza A Subtipo H5N1/metabolismo , Influenza Aviária/diagnóstico , Proteínas Recombinantes de Fusão , Proteínas da Matriz Viral/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Galinhas , Expressão Gênica , Virus da Influenza A Subtipo H5N1/imunologia , Peptídeos/síntese química , Peptídeos/imunologia , Proteínas Recombinantes de Fusão/química , Sensibilidade e Especificidade , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
16.
Prev Vet Med ; 107(3-4): 280-5, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743214

RESUMO

Live bird markets (LBMs) are at risk of contamination with the avian influenza H5N1 virus. There are a number of methods for prioritizing LBMs for intervention to curb the risk of contamination. Selecting a method depends on diagnostic objective and disease prevalence. In a low resource setting, options for prioritization are constricted by the cost of and resources available for tool development and administration, as well as the resources available for intervention. In this setting, tools can be developed using previously collected data on risk factors for contamination, and translated into prediction equations, including decision trees (DTs). DTs are a graphical type of classifier that combine simple questions about the data in an intuitive way. DTs can be used to develop tools tailored to different diagnostic objectives. To demonstrate the utility of this method, risk factor data arising from a previous cross-sectional study in 83 LBMs in Indonesia were used to construct DTs. A DT with high specificity was selected for the initial stage of an LBM intervention campaign in which authorities aim to focus intervention resources on a small set of LBMs that are at near-certain risk of contamination. Another DT with high sensitivity was selected for later stages in an intervention campaign in which authorities aim to detect and prioritize all LBMs with the risk factors for virus contamination. The best specific DT achieved specificity of 77% and the best sensitive DT achieved sensitivity of 90%. The specific DT had two variables: the size of the duck population in the LBM and the human population density in the LBM's district. The sensitive DT had three variables: LBM location, whether solid waste was removed from the LBM daily and whether the LBM was zoned to separate the bird holding, slaughtering and sale areas. High specificity or sensitivity will be preferred by authorities depending on the stage of the intervention campaign. The study demonstrates that simple tools utilizing DTs can be developed to prioritize LBMs for intervention to control H5N1-virus. DT tools are simple to apply, suitable for low-resource settings and can be tailored to the particular needs and stage of the disease control program.


Assuntos
Galinhas , Transmissão de Doença Infecciosa/veterinária , Patos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Estudos Transversais , Árvores de Decisões , Transmissão de Doença Infecciosa/prevenção & controle , Indonésia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Prevalência , Fatores de Risco
17.
Prev Vet Med ; 100(1): 71-8, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21489646

RESUMO

Live bird markets can become contaminated with and become a source of transmission for avian influenza viruses including the highly pathogenic H5N1 strain. Many countries affected by the H5N1-virus have limited resources for programs in environmental health, sanitation and disease control in live bird markets. This study proposes five critical control points (CCPs) to reduce the risk of H5N1-virus contamination in markets in low resource settings. The CCPs were developed based on three surveys conducted in Indonesia: a cross-sectional survey in 119 markets, a knowledge, attitudes and practice survey in 3 markets and a microbiological survey in 83 markets. These surveys assessed poultry workflow, market infrastructure, hygiene and regulatory practices and microbiological contamination with the H5N1-virus. The five CCPs identified were (1) reducing risk of receiving infected birds into the market, (2) reducing the risk of virus spread between different bird flocks in holding cages, (3) reducing surface contamination by isolating slaughter processes from other poultry-related processes, (4) minimizing the potential for contamination during evisceration of carcasses and (5) reducing the risk of surface contamination in the sale zone of the market. To be relevant for low resource settings, the CCPs do not necessitate large infrastructure changes. The CCPs are suited for markets that slaughter poultry and have capacity for daily disposal and removal of solid waste from the market. However, it is envisaged that the CCPs can be adapted for the development of risk-based programs in various settings.


Assuntos
Doenças das Aves/microbiologia , Doenças das Aves/prevenção & controle , Comércio/métodos , Inocuidade dos Alimentos/métodos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/microbiologia , Influenza Aviária/prevenção & controle , Animais , Doenças das Aves/imunologia , Doenças das Aves/transmissão , Aves , Estudos Transversais , Indonésia , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Entrevistas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA