Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(24): 8559-8567, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110783

RESUMO

The open port interface (OPI) coupled to an atmospheric pressure ion source is used to capture, dilute, focus, and transport nanoliter volume sample droplets for high-speed mass spectrometric analysis. For typical applications, the system has been optimized to achieve 1 Hz nanoliter volume sample transfer rates while simultaneously diluting the sample >1000-fold to minimize sample matrix-induced ionization suppression. Geometric, flow, and dispensing alterations to the system presented here demonstrate that sample transfer rates for the OPI of at least 15 Hz are possible. The fluid dynamic processes that enable sampling rates of 1 Hz and greater are examined in detail by correlating computational fluid dynamics simulations, analytic calculations, experimental data, photographic footage, and reference to the fluid dynamics literature. The resulting models and experimental results provide the rationale underlying the design and tuning of the system as well as information for developing optimized analytical methods. In combination with acoustic droplet dispensing, referred to as acoustic ejection mass spectrometry (AEMS), this system can be considered to be a special case of flow injection analysis with unique features that control the peak width, symmetry, and segregation of the samples transported in a fluid while simultaneously enabling their mixing and dilution with carrier fluids. In addition, conditions are established to prevent direct contact of the sample with a surface enabling, in combination with a contact-free dispenser like acoustic ejection, a dramatic reduction in sample-to-sample carry-over.


Assuntos
Acústica , Hidrodinâmica , Espectrometria de Massas
2.
PLoS One ; 13(6): e0198534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924842

RESUMO

Kinetic studies of biological macromolecules increasingly use microfluidic mixers to initiate and monitor reaction progress. A motivation for using microfluidic mixers is to reduce sample consumption and decrease mixing time to microseconds. Some applications, such as small-angle x-ray scattering, also require large (>10 micron) sampling areas to ensure high signal-to-noise ratios and to minimize parasitic scattering. Chaotic to marginally turbulent mixers are well suited for these applications because this class of mixers provides a good middle ground between existing laminar and turbulent mixers. In this study, we model various chaotic to marginally turbulent mixing concepts such as flow turning, flow splitting, and vortex generation using computational fluid dynamics for optimization of mixing efficiency and observation volume. Design iterations show flow turning to be the best candidate for chaotic/marginally turbulent mixing. A qualitative experimental test is performed on the finalized design with mixing of 10 M urea and water to validate the flow turning unsteady mixing concept as a viable option for RNA and protein folding studies. A comparison of direct numerical simulations (DNS) and turbulence models suggests that the applicability of turbulence models to these flow regimes may be limited.


Assuntos
Microfluídica/métodos , Proteínas/metabolismo , RNA/metabolismo , Desenho de Equipamento , Cinética , Microfluídica/instrumentação , Modelos Teóricos , Dobramento de Proteína , Proteínas/química , RNA/química , Dobramento de RNA , Ureia/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA