Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761004

RESUMO

Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, characterized by the presence of amyloid-beta (Aß) plaques, neurofibrillary tangles, neuroinflammation, synapse loss and neurodegeneration in the brain. The amyloid cascade hypothesis postulates that deposition of Aß peptides is the causative agent of AD pathology, but we still lack comprehensive understanding of the molecular mechanisms connecting Aß peptides to neuronal dysfunctions in AD. In this work, we investigate the early effects of Aß peptide accumulation on the functional properties and gene expression profiles of human-induced neurons (hiNs). We show that hiNs acutely exposed to low concentrations of both cell-secreted Aß peptides or synthetic Aß1-42 exhibit alterations in the frequency of calcium transients suggestive of increased neuronal excitability. Using single-cell RNA sequencing, we also show that cell-secreted Aß up-regulates the expression of several synapse-related genes and down-regulates the expression of genes associated with metabolic stress mainly in glutamatergic neurons and, to a lesser degree, in GABAergic neurons and astrocytes. These neuronal alterations correlate with activation of the SEMA5, EPHA and NECTIN signaling pathways, which are important regulators of synaptic plasticity. Altogether, our findings indicate that slight elevations in Aß concentrations are sufficient to elicit transcriptional changes in human neurons, which can contribute to early alterations in neural network activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA