Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39064357

RESUMO

The rapid advancement of the Internet of Things (IoT) serves as a significant driving force behind the development of innovative sensors and actuators. This technological progression has created a substantial demand for new flexible pressure sensors, essential for a variety of applications ranging from wearable devices to smart home systems. In response to this growing need, our laboratory has developed a novel flexible pressure sensor, designed to offer an improved performance and adaptability. This study aims to present our newly developed sensor, detailing the comprehensive investigations we conducted to understand how different parameters affect its behaviour. Specifically, we examined the influence of the resistive layer thickness and the elastomeric substrate on the sensor's performance. The resistive layer, a critical component of the sensor, directly impacts its sensitivity and accuracy. By experimenting with varying thicknesses, we aimed to identify the optimal configuration that maximizes sensor efficiency. Similarly, the elastomeric substrate, which provides the sensor's flexibility, was scrutinized to determine how its properties affect the sensor's overall functionality. Our findings highlight the delicate balance required between the resistive layer and the elastomeric substrate to achieve a sensor that is both highly sensitive and durable. This research contributes valuable insights into the design and optimization of flexible pressure sensors, paving the way for more advanced IoT applications.

2.
Biosensors (Basel) ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248408

RESUMO

There is great interest in the development of prosthetic limbs capable of complex activities that are wirelessly connected to the patient's neural system. Although some progress has been achieved in this area, one of the main problems encountered is the selective acquisition of nerve impulses and the closing of the automation loop through the selective stimulation of the sensitive branches of the patient. Large-scale research and development have achieved so-called "cuff electrodes"; however, they present a big disadvantage: they are not selective. In this article, we present the progress made in the development of an implantable system of plug neural microelectrodes that relate to the biological nerve tissue and can be used for the selective acquisition of neuronal signals and for the stimulation of specific nerve fascicles. The developed plug electrodes are also advantageous due to their small thickness, as they do not trigger nerve inflammation. In addition, the results of the conducted tests on a sous scrofa subject are presented.


Assuntos
Antebraço , Inflamação , Humanos , Eletrodos Implantados , Potenciais de Ação , Automação
3.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889642

RESUMO

Graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs)-polypropylene (PP) composite materials for electromagnetic interference (EMI) shielding applications were fabricated as 1 mm thick panels and their properties were studied. Structural and morphologic characterization indicated that the obtained composite materials are not simple physical mixtures of these components but new materials with particular properties, the filler concentration and nature affecting the nanomaterials' structure and their conductivity. In the case of GNPs, their characteristics have a dramatic effect of their functionality, since they can lead to composites with lower conductivity and less effective EMI shielding. Regarding CNTs-PP composite panels, these were found to exhibit excellent EMI attenuation of more than 40 dB, for 10% CNTs concentration. The development of PP-based composite materials with added value and particular functionality (i.e., electrical conductivity and EMI shielding) is highly significant since PP is one of the most used polymers, the best for injection molding, and virtually infinitely recyclable.

4.
Micromachines (Basel) ; 13(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35630149

RESUMO

Improper foot biomechanics associated with uneven bodyweight distribution contribute to impaired balance and fall risks. There is a need to complete the panel of commercially available devices for the self-measurement of BMI, fat, muscle, bone, weight, and hydration with one that measures weight-shifting at home as a pre-specialist assessment system. This paper reports the development of the Early Notice Pointer (ENP), a user-friendly screening device based on weighing scale technology. The ENP is designed to be used at home to provide a graphic indication and customised and evidence-based foot and posture triage. The device electronically detects and maps the bodyweight and distinct load distributions on the main areas of the feet: forefoot and rearfoot. The developed platform also presents features that assess the user's balance, and the results are displayed as a simple numerical report and map. The technology supports data display on mobile phones and accommodates multiple measurements for monitoring. Therefore, the evaluation could be done at non-specialist and professional levels. The system has been tested to validate its accuracy, precision, and consistency. A parallel study to describe the frequency of arch types and metatarsal pressure in young adults (1034 healthy subjects) was conducted to explain the importance of self-monitoring at home for better prevention of foot arch- and posture-related conditions. The results showed the potential of the newly created platform as a screening device ready to be wirelessly connected with mobile phones and the internet for remote and personalised identification and monitoring of foot- and body balance-related conditions. The real-time interpretation of the reported physiological parameters opens new avenues toward IoT-like on-body monitoring of human physiological signals through easy-to-use devices on flexible substrates for specific versatility.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159833

RESUMO

The development of materials offering electromagnetic interference (EMI) shielding is of significant consideration, since this can help in expanding the lifetime of devices, electromagnetic compatibility, as well as the protection of biological systems. Conductive paints used widely today in electromagnetic interference (EMI) shielding applications are often based on organic solvents that can create safety issues due to the subsequent environment problems. This paper concerned the development of eco-friendly conductive water-based paints for use in EMI-shielding applications. Graphene nanoplatelets, polyaniline emeraldine (PANI) doped with poly(styrene sulfonic acid) (PSS) or HCl or HBr and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) (PEDOT:PSS) in various ratios were employed in a water base for developing the paints. The target was to develop homogeneous water-based paint-like fluid mixtures easily applied onto surfaces using a paint brush, leading in homogeneous, uniform, opaque layers, draying fast in air at room temperature, and having quite good electrical conductivity that can offer efficient EMI-shielding performance. The results of this parametric trial indicated the optimum compositions leading in paints with optimized properties that can result in uniform, homogeneous, and conductive layers up to a thickness of over 500 µm without deformation and cracking, offering attenuation of up to 60 dBs of incoming GHz electromagnetic radiation. In addition, the structural and morphological characteristics of these paints were studied in detail.

6.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683694

RESUMO

The present manuscript reports on optimized formulations of alcohol-based conductive paints for electromagnetic interference shielding (EMI), which can ensure compatibility and reduce the visibility of electronic equipment, as a continuation of our previous work in this field, which examined water-based formulations for other applications. Graphite, carbon black, graphene, Fe3O4, Fe ore, and PEDOT:PSS in various ratios and combinations were employed in an alcohol base for developing homogeneous paint-like fluid mixtures that could be easily applied to surfaces with a paintbrush, leading to homogeneous, uniform, opaque layers, drying fast in the air at room temperature; these layers had a reasonably good electrical conductivity and, subsequently, an efficient EMI-shielding performance. Uniform, homogeneous and conductive layers with a thickness of over 1 mm without exfoliations and cracking were prepared with the developed paints, offering an attenuation of up to 50 dB of incoming GHz electromagnetic radiation. The structural and morphological characteristics of the paints, which were studied in detail, indicated that these are not simple physical mixtures of the ingredients but new composite materials. Finally, mechano-climatic and environmental tests on the coatings demonstrated their quality, since temperature, humidity and vibration stressors did not affect them; this result proves that these coatings are suitable for commercial products.

7.
Front Cell Infect Microbiol ; 12: 807253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252028

RESUMO

Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , Infecções Respiratórias , Técnicas Biossensoriais/métodos , Humanos , Microfluídica , Infecções Respiratórias/diagnóstico , Testes Sorológicos
8.
Micromachines (Basel) ; 12(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577734

RESUMO

Real-time "on-body" monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA