Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1100-1108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778103

RESUMO

The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.


Assuntos
Encéfalo , Drosophila melanogaster , Modelos Neurológicos , Neurônios , Lobo Óptico de Animais não Mamíferos , Comportamento Social , Percepção Visual , Animais , Feminino , Masculino , Drosophila melanogaster/fisiologia , Drosophila melanogaster/citologia , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Percepção Visual/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia
2.
Nature ; 622(7984): 794-801, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821705

RESUMO

Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.


Assuntos
Encéfalo , Drosophila melanogaster , Vias Neurais , Neurônios , Desempenho Psicomotor , Vocalização Animal , Animais , Feminino , Masculino , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Vocalização Animal/fisiologia
3.
J Therm Biol ; 93: 102690, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33077113

RESUMO

Much interest exists in the extent to which constant versus fluctuating temperatures affect thermal performance traits and their phenotypic plasticity. Theory suggests that effects should vary with temperature, being especially pronounced at more extreme low (because of thermal respite) and high (because of Jensen's inequality) temperatures. Here we tested this idea by examining the effects of constant temperatures (10 to 30 °C in 5 °C increments) and fluctuating temperatures (means equal to the constant temperatures, but with fluctuations of ±5 °C) temperatures on the adult (F2) phenotypic plasticity of three thermal performance traits - critical thermal minimum (CTmin), critical thermal maximum (CTmax), and upper lethal temperature (ULT50) in ten species of springtails (Collembola) from three families (Isotomidae 7 spp.; Entomobryidae 2 spp.; Onychiuridae 1 sp.). The lowest mean CTmin value recorded here was -3.56 ± 1.0 °C for Paristoma notabilis and the highest mean CTmax was 43.1 ± 0.8 °C for Hemisotoma thermophila. The Acclimation Response Ratio for CTmin was on average 0.12 °C/°C (range: 0.04 to 0.21 °C/°C), but was much lower for CTmax (mean: 0.017 °C/°C, range: -0.015 to 0.047 °C/°C) and lower also for ULT50 (mean: 0.05 °C/°C, range: -0.007 to 0.14 °C/°C). Fluctuating versus constant temperatures typically had little effect on adult phenotypic plasticity, with effect sizes either no different from zero, or inconsistent in the direction of difference. Previous work assessing adult phenotypic plasticity of these thermal performance traits across a range of constant temperatures can thus be applied to a broader range of circumstances in springtails.


Assuntos
Artrópodes/fisiologia , Termotolerância , Animais , Artrópodes/classificação , Solo
4.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225998

RESUMO

Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the Drosophila female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e. This reveals strong recurrent connectivity between, in particular, pC1d/e neurons and a specific subset of Fruitless+ neurons called aIPg. We additionally find that pC1d/e activation drives long-lasting persistent neural activity in brain areas and cells overlapping with the pC1d/e neural network, including both Doublesex+ and Fruitless+ neurons. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.


Long-term mental states such as arousal and mood variations rely on persistent changes in the activity of certain neural circuits which have been difficult to identify. For instance, in male fruit flies, the activation of a particular circuit containing 'P1 neurons' can escalate aggressive and mating behaviors. However, less is known about the neural networks that underlie arousal in female flies. A group of female-specific, 'pC1 neurons' similar to P1 neurons could play this role, but it was unclear whether it could drive lasting changes in female fly behavior. To investigate this question, Deutsch et al. stimulated or shut down pC1 circuits in female flies, and then recorded the insects' interactions with male flies. Stimulation was accomplished using optogenetics, a technique which allows researchers to precisely control the activity of specially modified light-sensitive neurons. Silencing pC1 neurons in female flies diminished their interest in male partners and their suitor's courtship songs. Activating these neural circuits made the females more receptive to males; it also triggered long-lasting aggressive behaviors not typically observed in virgin females, such as shoving and chasing. Deutsch et al. then identified the brain cells that pC1 neurons connect to, discovering that these neurons are part of an interconnected circuit also formed of aIPg neurons ­ a population of fly brain cells that shows sex differences and is linked to female aggression. The brains of females were then imaged as pC1 neurons were switched on, revealing a persistent activity which outlasted the activation in circuits containing both pC1 and aIPg neurons. Thus, these results link neural circuit architecture to long lasting changes in neural activity, and ultimately, in behavior. Future experiments can build on these results to determine how this circuit is activated during natural social interactions.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/ultraestrutura , Corte , Drosophila melanogaster/ultraestrutura , Feminino , Masculino , Microscopia Eletrônica , Atividade Motora/fisiologia , Vias Neurais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA