Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769266

RESUMO

As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.


Assuntos
Anti-Infecciosos , Poliésteres , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Polímeros , Biopolímeros/uso terapêutico
2.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203420

RESUMO

Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.


Assuntos
Grafite , Nanoestruturas , Óxidos , Compostos de Prata , Prata
3.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917359

RESUMO

The aim of the study was to create a mathematical model useful for monitoring the release of bioactive aldehydes covalently bonded to the chitosan by reversible imine linkage, considered as a polymer-drug system. For this purpose, two hydrogels were prepared by the acid condensation reaction of chitosan with the antifungal 2-formyl-phenyl-boronic acid and their particularities; influencing the release of the antifungal aldehyde by shifting the imination equilibrium to the reagents was considered, i.e., the supramolecular nature of the hydrogels was highlighted by polarized light microscopy, while scanning electron microscopy showed their microporous morphology. Furthermore, the in vitro fungicidal activity was investigated on two fungal strains and the in vitro release curves of the antifungal aldehyde triggered by the pH stimulus were drawn. The theoretical model was developed starting from the hypothesis that the imine-chitosan system, both structurally and functionally, can be assimilated, from a mathematical point of view, with a multifractal object, and its dynamics were analyzed in the framework of the Scale Relativity Theory. Thus, through Riccati-type gauges, two synchronous dynamics, one in the scale space, associated with the fungicidal activity, and the other in the usual space, associated with the antifungal aldehyde release, become operational. Their synchronicity, reducible to the isomorphism of two SL(2R)-type groups, implies, by means of its joint invariant functions, bioactive aldehyde compound release dynamics in the form of "kink-antikink pairs" dynamics of a multifractal type. Finally, the theoretical model was validated through the experimental data.


Assuntos
Antifúngicos/farmacologia , Quitosana/química , Liberação Controlada de Fármacos , Modelos Teóricos , Aldeídos/química , Fractais , Hidrogéis/química , Iminas/química
4.
Entropy (Basel) ; 23(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530405

RESUMO

In the framework of the multifractal hydrodynamic model, the correlations informational entropy-cross-entropy manages attractive and repulsive interactions through a multifractal specific potential. The classical dynamics associated with them imply Hubble-type effects, Galilei-type effects, and dependences of interaction constants with multifractal degrees at various scale resolutions, while the insertion of the relativistic amendments in the same dynamics imply multifractal transformations of a generalized Lorentz-type, multifractal metrics invariant to these transformations, and an estimation of the dimension of the multifractal Universe. In such a context, some correspondences with standard cosmologies are analyzed. Since the same types of interactions can also be obtained as harmonics mapping between the usual space and the hyperbolic plane, two measures with uniform and non-uniform temporal flows become functional, temporal measures analogous with Milne's temporal measures in a more general manner. This work furthers the analysis published recently by our group in "Towards Interactions through Information in a Multifractal Paradigm".

5.
Antibiotics (Basel) ; 13(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39061313

RESUMO

With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces.

6.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676270

RESUMO

The unbiased Langmuir probe (LP) method was used to perform measurements on HfO2 and ZrO2 samples around the laser ablation threshold on a wide range of irradiation conditions. Important changes in the lifetime (from ms to µs) and the shape of the charge particle current were seen with the increase of the laser fluence. The ablation threshold was estimated by evaluating the overall average ablated charge as a function of the laser fluence. Above the ablation threshold, the generation of high kinetic species is seen, which can reach several keV. An important jump in ion acceleration potential is observed for values above 1 J/cm2, which coincides with the dominant presence of negative ions in the plasma. The evolution of several plasma parameters (ion density, expansion velocity, electron temperature, Debye length) was investigated and correlated with the fundamental ablation mechanism involved in various irradiation regimes. The LP data were correlated with COMSOL simulations on the maximum surface temperature reached during irradiation. Important correlations between the evaporation and melting processes and ablation threshold fluence and ion acceleration phenomena are also reported.

7.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837224

RESUMO

We report on the formation of silver nanoparticles by gas aggregation in a reaction chamber at room temperature. The size distribution of nanoparticles deposited on a silicon substrate for various lengths of an aggregation (high-pressure) chamber was investigated by atomic force microscopy. Nanoparticles were characterized by scanning and transmission electron microscopy and spectral ellipsometry. The physical shape of the nanoparticles and its distribution was correlated with their optical properties. Metal-dielectric nanocomposites were deposited employing simultaneous deposition of Ag NPs via high-pressure magnetron sputtering and the dielectric matrix was deposited via thermal evaporation. Pure and Eu-, Er-, and Yb-doped lithium fluoride was used as the dielectric host matrix. Optical transmittance of lithium fluoride containing silver nanoparticles was measured and their theoretical absorption cross-section calculated. The nanoparticles were also embedded in Eu3+-doped downshifting and Er3+- and Yb3+-doped up-conversion materials to study their influence on emission spectra. Spectra of identical layers with and without nanoparticles were compared. Their transmittance at various annealing temperatures is also presented.

8.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885492

RESUMO

The dynamics of transient plasma generated by UV ns-laser ablation of selected metals (Co, Cu, Ag, Bi) were investigated by the Langmuir Probe method in angle- and time-resolved modes. Multiple ionic and electronic structures were seen for all plasmas with some corresponding to anions or nanoparticle-dominated structures. The addition of an Ar atmosphere energetically confined the plasma and increased the charge density by several orders of magnitude. For pressure ranges exceeding 0.5 Pa fast ions were generated in the plasma as a result of Ar ionization and acceleration in the double layer defining the front of the plasma plume. Several correlations between the target nature plasma properties were attempted. The individual plasma structure expansion velocity increases with the melting point and decreases with the atomic mass while the corresponding charged particle densities decrease with the melting point, evidencing the relationship between the volatility of the sample and the overall abated mass.

9.
Drug Deliv ; 28(1): 261-271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33501878

RESUMO

Controlled drug delivery systems are of utmost importance for the improvement of drug bioavailability while limiting the side effects. For the improvement of their performances, drug release modeling is a significant tool for the further optimization of the drug delivery systems to cross the barrier to practical application. We report here on the modeling of the diclofenac sodium salt (DCF) release from a hydrogel matrix based on PEGylated chitosan in the context of Multifractal Theory of Motion, by means of a fundamental spinor set given by 2 × 2 matrices with real elements, which can describe the drug-release dynamics at global and local scales. The drug delivery systems were prepared by in situ hydrogenation of PEGylated chitosan with citral in the presence of the DCF, by varying the hydrophilic/hydrophobic ratio of the components. They demonstrated a good dispersion of the drug into the matrix by forming matrix-drug entities which enabled a prolonged drug delivery behavior correlated with the hydrophilicity degree of the matrix. The application of the Multifractal Theory of Motion fitted very well on these findings, the fractality degree accurately describing the changes in hydrophilicity of the polymer. The validation of the model on this series of formulations encourages its further use for other systems, as an easy tool for estimating the drug release toward the design improvement. The present paper is a continuation of the work 'A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations,' published in Drug Delivery Journal, 27(1), 2020, that focused on the consequences induced by the invariance groups of Multifractal Diffusion Equations in correlation with the drug release dynamics.


Assuntos
Quitosana , Diclofenaco/farmacocinética , Liberação Controlada de Fármacos , Hidrogéis , Modelos Teóricos , Polietilenoglicóis , Monoterpenos Acíclicos , Diclofenaco/administração & dosagem , Sistemas de Liberação de Medicamentos , Hidrogenação , Modelos Químicos
10.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947167

RESUMO

Eu3+-doped oxide thin films possess a great potential for several emerging applications in optics, optoelectronics, and sensors. The applications demand maximizing Eu3+ photoluminescence response. Eu-doped ZnO, TiO2, and Lu2O3 thin films were deposited by Pulsed Laser Deposition (PLD). Pulsed UV Laser Annealing (PLA) was utilized to modify the properties of the films. In situ monitoring of the evolution of optical properties (photoluminescence and transmittance) at PLA was realized to optimize efficiently PLA conditions. The changes in optical properties were related to structural, microstructural, and surface properties characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The substantial increase of Eu3+ emission was observed for all annealed materials. PLA induces crystallization of TiO2 and Lu2O3 amorphous matrix, while in the case of already nanocrystalline ZnO, rather surface smoothening0related grains' coalescence was observed.

11.
Polymers (Basel) ; 12(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492849

RESUMO

This paper reports the calibration of a theoretical multifractal model based on empirical data on the urea release from a series of soil conditioner systems. To do this, a series of formulations was prepared by in situ hydrogelation of chitosan with salicylaldehyde in the presence of different urea amounts. The formulations were morphologically characterized by scanning electron microscopy and polarized light microscopy. The in vitro urea release was investigated in an environmentally simulated medium. The release data were fitted on five different mathematical models, Korsmeyer-Peppas, Zero order, First order, Higuchi and Hixson-Crowell, which allowed the establishment of a mechanism of urea release. Furthermore, a multifractal model, used for the fertilizer release for the first time, was calibrated using these empirical data. The resulting fit was in good agreement with the experimental data, validating the multifractal theoretical model.

12.
Drug Deliv ; 27(1): 1125-1133, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32720542

RESUMO

The paper reports a new mathematical model for understanding the mechanism delivery from drug release systems. To do this, two drug release systems based on chitosan and diclofenac sodium salt as a drug model, were prepared by in situ hydrogelation in the presence of salicylaldehyde. The morphology of the systems was analyzed by scanning electron microscopy and polarized light microscopy and the drug release was in vitro investigated into a medium mimicking the in vivo environment. The drug release mechanism was firstly assessed by fitting the in vitro release data on five traditional mathematical model. In the context of pharmacokinetics behavioral analysis, a new mathematical procedure for describing drug release dynamics in polymer-drug complex systems was proposed. Assuming that the dynamics of polymer-drug system's structural units take place on continuous and nondifferentiable curves (multifractal curves), it was showed that in a one-dimensional hydrodynamic formalism of multifractal variables the drug release mechanism is given through synchronous dynamics at a differentiable and non-differentiable scale resolutions.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Quitosana/química , Diclofenaco/administração & dosagem , Liberação Controlada de Fármacos , Modelos Teóricos , Aldeídos/química , Química Farmacêutica , Preparações de Ação Retardada , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica de Varredura , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA