Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470221

RESUMO

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Assuntos
Produtos da Carne , Carne , Aminas , Antioxidantes , Carcinógenos
2.
J Environ Manage ; 345: 118858, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647731

RESUMO

Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.


Assuntos
Arsênio , Bacillus , Chlorella , Microalgas , Solo , Substâncias Húmicas , Triptofano
3.
Ecotoxicol Environ Saf ; 216: 112173, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33798866

RESUMO

The reclamation of alkaline soils remains challenging while the application of biochar has been proposed as a viable measure to rehabilitate soil fertility. The objective of the current pot study was to evaluate the efficacy of various P-La modified sewage sludge biochars (SSBC, La-SSBC, SSBC-P, La-SSBC-P) on soil phosphate-retention and ryegrass (Lolium perenne L.) growth in an alkaline soil (excess CaCO3). The results revealed that germination percentage, plant dry biomass, plant height, and the total amount of P in the ryegrass leaves were significantly (P < 0.05) improved under La-SSBC-P treatment as compared to other treatments. La-SSBC-P treatment significantly altered the chemical characteristics of post-harvest alkaline soil, such as pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), limestone (CaCO3), phosphate, and lanthanum contents. In comparison to the SSBC treatment, soil available phosphorous (AP) contents under La-SSBC-P were enhanced by 6.7 times after loading biochar with P and La (La-SSBC-P). After the plantation of ryegrass, concentration of lanthanum in the soil was negligible. The contents of CaCO3 reduced by 76.2% after La-SSBC-P biochar treatment, compared to the cultivated control. This phenomenon clearly indicated that lanthanum was reduced due to the precipitation with limestone, which was proposed based on the data of X-ray diffraction (XRD) analysis. Overall, results showed that the P-loaded lanthanum decorated biochar (La-SSBC-P) could be used as a potential substitute for P-fertilizer under the experimental conditions. However, field experiments are required to confer the efficiency of La-SSBC-P as P fertilizer in different soils.

4.
Int J Phytoremediation ; 22(11): 1147-1155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189511

RESUMO

Arsenic (As) pollution of fresh water has become a major concern worldwide. The present study reports the As accumulation potential and detoxification mechanism in a native plant, Vallisneria denseserrulata (Makino), under different aquatic acidity conditions (pH). V. denseserrulata showed maximum growth at pH ∼7.0 and accumulated ∼1700 mg/kg of As. The increase in pH from 3.5 to 7 significantly (p ≤ 0.05) increased As accumulation, thiol and total protein contents while malondialdehyde (MDA) content, soluble sugar content and percentage electrolytic leakage (%EL) of V. denseserrulata were decreased. The reduction of arsenate [As(V)] to arsenite As(III) was observed as a key step (81% reduction) of the As detoxification in V. denseserrulata. Majority of accumulated As was found in vacuoles (56-72%), while >80% of As in vacuoles was in the form of As(III). FT-IR spectra indicated the complexsation of As with carboxyl, amide, thiol, and hydroxyl groups. Our findings showed the presence of As detoxification mechanism in V. denseserrulata. Vacuolar As compartmentalization and formation of As-Phytochelatins/thiol complexes can be a part of As detoxification mechanisms in V. denseserrulata.


Assuntos
Arsênio/análise , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Vacúolos/química
5.
J Sci Food Agric ; 99(13): 5771-5777, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31162676

RESUMO

BACKGROUND: Red fish meat (a by-product of fillet processing from grass carp) is a rich source of good-quality protein, which makes it an important candidate for the production of functional foods. In this study, wheat flour was replaced with red fish meat (RFM) leftover from grass carp fillet frames at different levels (100-300 g kg-1 ) in fried snacks on a laboratory scale. The quality characteristics, physicochemical properties and sensory acceptability of the fried snacks were assessed. RESULTS: The addition of RFM significantly (P < 0.05) increased protein, fat, moisture and ash contents, while texture (breakage force) was improved. Expansion and water hydration capacity were decreased with increasing content of RFM. Lightness (L*) was increased whereas redness (a*) and yellowness (b*) were decreased with the addition of RFM. Scanning electron microscopy showed that the protein matrix was increased and fewer starch granules were found when RFM was added. Moreover, in vitro protein digestibility was also increased in samples prepared with RFM compared with the control. Furthermore, essential amino acids (lysine, leucine, threonine and methionine) increased (1.2-fold compared with the control) with increasing RFM content. CONCLUSION: The results suggested that red fish meat can be used to make a new snack product with improved nutritional value and textural properties. © 2019 Society of Chemical Industry.


Assuntos
Carne/análise , Lanches , Animais , Carpas , Cor , Culinária , Farinha/análise , Manipulação de Alimentos , Humanos , Valor Nutritivo , Paladar , Triticum/química , Resíduos/análise
6.
Fish Shellfish Immunol ; 76: 272-278, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29510254

RESUMO

The gut immune system is, the main option for maintaining host's health, affected by numerous factors comprising dietary constituents and commensal bacteria. These dietary components that affect the intestinal immunity and considered as an alternative of antibiotics are called immunosaccharides. Fructooligosaccharide (FOS), Galactooligosaccharide (GOS), inulin, dietary carbohydrates, and xylooligosaccharide (XOS) are among the most studied prebiotics in human as well as in aquaculture. Although prebiotics and probiotics have revealed potential as treatment for numerous illnesses in both human and fish, a comprehensive understanding of the molecular mechanism behind direct and indirect effect on the intestinal immune response will help more and perhaps extra effective therapy intended for ailments. This review covers the most newly deep-rooted scientific outcomes about the direct and indirect mechanism through which these dietetic strategies can affect intestinal immunity of terrestrial and aquatic animals. Prebiotics exert an influence on gut immune system via the increase in lysozyme and phagocytic activity, macrophage activation and stimulation of monocyte-derived dendritic cells. Furthermore, these functional molecules also enhance epithelial barrier function, beneficial gut microbial population, and production of intermediate metabolites for example short chain fatty acids (SCFAs) that assist in balancing the immune system. Moreover, emphasis will be sited on the relationship among food/feed, the microbiota, and the gut immune system. In conclusion, further studies are nonetheless essential to confirm the direct effect of prebiotics on immune response.


Assuntos
Adjuvantes Imunológicos/farmacologia , Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Prebióticos , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Humanos , Intestinos/imunologia , Prebióticos/administração & dosagem
7.
Environ Pollut ; 341: 123001, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000723

RESUMO

Microorganisms are of great significance for arsenic (As) toxicity amelioration in plants as soil fertility is directly affected by microbes. In this study, we innovatively explored the effects of indigenous cyanobacteria (Leptolyngbya sp. XZMQ) and plant growth-promoting bacteria (PGPB) (Bacillus XZM) on the growth and As absorption of sunflower plants from As-contaminated soil. Results showed that single inoculation and co-inoculation stimulated the growth of sunflower plants (Helianthus annuus L.), enhanced enzyme activities, and reduced As contents. In comparison to the control group, single innoculation of microalgae and bacteria in the rhizosphere increased extracellular polymeric substances (EPS) by 21.99% and 14.36%, respectively, whereas co-inoculation increased them by 35%. Compared with the non-inoculated group, As concentration in the roots, stems and leaves of sunflower plants decreased by 38%, 70% and 41%, respectively, under co-inoculation conditions. Inoculation of Leptolyngbya sp. XZMQ significantly increased the abundance of nifH in soil, while co-inoculation of cyanobacteria and Bacillus XZM significantly increased the abundance of cbbL, indicating that the coupling of Leptolyngbya sp. XZMQ and Bacillus XZM could stimulate the activity of nitrogen-fixing and carbon-fixing microorganisms and increased soil fertility. Moreover, this co-inoculation increased the enzyme activities (catalase, sucrase, urease) in the rhizosphere soil of sunflower and reduced the toxic effect of As on plant. Among these, the activities of catalase, peroxidase, and superoxide dismutase decreased. Meanwhile, co-inoculation enables cyanobacteria and bacteria to attach and entangle in the root area of the plant and develop as symbiotic association, which reduced As toxicity. Co-inoculation increased the abundance of aioA, arrA, arsC, and arsM genes in soil, especially the abundance of microorganisms with aioA and arsM, which reduced the mobility and bioavailability of As in soil, hence, reduced the absorption of As by plants. This study provides a theoretical basis for soil microbial remediation in mining areas.


Assuntos
Arsênio , Bacillus , Cianobactérias , Helianthus , Poluentes do Solo , Catalase , Arsênio/toxicidade , Rizosfera , Raízes de Plantas/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
8.
Environ Pollut ; 346: 123597, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369096

RESUMO

Coconut shell activated carbon (CNSAC) was applied as a filter layer in hybrid vertical subsurface flow constructed wetland (H-VSSF-CW), in order to enhance the multi-metal removal efficiency of the constructed wetland (CW) and to reduce heavy metal accumulation on Salvinia cucullata. Treatment P + AC, (having CNSAC filter layer), showed 32, 21 and 34% more Cd, Cr, and Pb removal efficiency than treatment P (without CNSAC layer). CNSAC activated carbon adsorbed Cd and Pb and Cr by functional groups -NH, -NO2, -C-O, -OH and -CO, and significantly reduced Cd and Pb exposure to S. cucullate. Chromium adsorption by CNSAC filter layer was half (just 25% of total input) of the Cd and Pb. In treatment P, due to high Cd, Pb and Cr accumulation in S. cucullate, the antioxidant defense mechanism of the plant was collapsed and cell death was observed, which in turn has resulted reduced biomass gain (5% reduction). On the other hand, in treatment P + AC, an antioxidant defense mechanism was active in the form significantly (p ≤ 0.05) increased of SOD, CAT and proline content while reduced MDA, EL, %EB and soluble sugar. So, the application of CNSAC increased the heavy metal removal efficiency of H-VSSF-CW by adsorption of a considerable share of heavy metal and hence, reduced the heavy metal load/exposure to S. cucullate.


Assuntos
Metais Pesados , Traqueófitas , Cádmio/análise , Áreas Alagadas , Cocos/metabolismo , Antioxidantes , Carvão Vegetal , Biodegradação Ambiental , Chumbo , Eliminação de Resíduos Líquidos/métodos , Metais Pesados/análise
9.
Sci Total Environ ; 860: 160543, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455732

RESUMO

Biocrust was widely used for the immobilization and removal of arsenic (As) in drainage systems of rice fields and mining areas. In this study, the role of an indigenous cyanobacteria (Leptolyngbya sp. XZMQ) was explored in the bioremediation of As-contaminated farmland and tailing soil. After 80 d of inoculation with cyanobacteria, total As (As(T)) accumulated in the cyanobacterial crust of farmland and tailing soil was 279.89 mg kg-1 and 269.57 mg kg-1, respectively, and non-EDTA exchangeable fraction was the major fraction of it. The As(T) in farmland and tailing soil of micro-environment decreased by 10.76% and 12.73%, respectively. Meanwhile, the available As (As(a)) decreased by 21.25% and 27.65%, respectively. The XRD results showed that hematite and SiO2 existed in cyanobacterial crust of farmland and tailing soil. FTIR spectra indicated that the adsorption of As in cyanobacterial crust was mediated by OH and CO. After inoculation of Leptolyngbya sp. XZMQ, in subcrust soil, As biotransformation gene aioA was the most abundant, followed by arsM. The dominant phyla of soil biota were Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroiota, which could play critical roles in shaping aioA and arsM harboring microbe communities in soil. Redundancy analysis (RDA) showed that soil organic carbon (OC), pH, and chlorophyll a (Chl a) were the most important environmental factors in altering soil bacterial communities. Correlation analysis showed the Leptolyngbya had a positive correlation with Chl a, effective nitrogen (N(a)), electrical conductivity (EC), OC, pH in the soil, respectively, while it had a significant negative correlation with As(a), As(III) and As(T). These results emphasized on the significance of cyanobacteria in the behavior of As in mine soils and offered a promising strategy for bioremediation of As-contaminated soil in the mining area.


Assuntos
Arsênio , Cianobactérias , Microbiota , Poluentes do Solo , Arsênio/análise , Solo/química , Carbono , Clorofila A/análise , Dióxido de Silício , Cianobactérias/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/análise
10.
Foods ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685127

RESUMO

In the current study, apple-pectin-based novel nanofibers were fabricated by electrospinning. Polyvinyl alcohol (PVA) and apple pectin (PEC) solution were mixed to obtain an optimized ratio for the preparation of electrospun nanofibers. The obtained nanofibers were characterized for their physiochemical, mechanical and thermal properties. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Furthermore, an assay of the in vitro viability of free and encapsulated probiotics was carried out under simulated gastrointestinal conditions. The results of TGA revealed that the PVA/PEC nanofibers had good thermal stability. The probiotics encapsulated by electrospinning showed a high survival rate as compared to free cells under simulated gastrointestinal conditions. Furthermore, encapsulated probiotics and free cells showed a 3 log (cfu/mL) and 10 log (cfu/mL) reduction, respectively, from 30 to 120 min of simulated digestion. These findings indicate that the PVA/PEC-based nanofibers have good barrier properties and could potentially be used for the improved viability of probiotics under simulated gastrointestinal conditions and in the development of functional foods.

11.
Food Chem ; 404(Pt A): 134558, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244065

RESUMO

The present study aimed to investigate the effects of five emulsifiers, including DATEM, DMG, PL, SDS, and SPP, on HA formation in chemical models and roasted chicken patties. UPLC-MS analysis showed that DMG and SPP were the most promising among them. In particular, at 0.15-0.9% (w/w) in roasted chicken patties, they effectively reduced the contents of PhIP (21-43%), MeIQx (26-50%) and 4,8-DiMeIQx (16-43%) relative to the control, whereas DATEM, PL and SDS promoted their formation. Low-Field Nuclear Magnetic Resonance and Magnetic Resonance Imaging analysis revealed that the inhibitory effect of SPP and DMG was partly mediated through their capability to help retain water in the macromolecular structures of the muscle tissue. This favorable effect was also supported by the significantly improved adhesiveness of the SPP and DMG samples relative to other samples. These findings suggest that SPP and DMG are effective additives for attenuation of HA contents in meat-based products.


Assuntos
Galinhas , Compostos Heterocíclicos , Animais , Culinária/métodos , Cromatografia Líquida , Água , Espectrometria de Massas em Tandem/métodos , Compostos Heterocíclicos/análise , Carne/análise , Aminas/química , Emulsificantes/análise
12.
Biology (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37106811

RESUMO

This study determined the effect of Bacillus XZM extracellular polymeric substances (EPS) production on the arsenic adsorption capacity of the Biochar-Bacillus XZM (BCXZM) composite. The Bacillus XZM was immobilized on corn cobs multifunction biochar to generate the BCXZM composite. The arsenic adsorption capacity of BCXZM composite was optimized at different pHs and As(V) concentrations using a central composite design (CCD)22 and maximum adsorption capacity (42.3 mg/g) was attained at pH 6.9 and 48.9 mg/L As(V) dose. The BCXZM composite showed a higher arsenic adsorption than biochar alone, which was further confirmed through scanning electron microscopy (SEM) micrographs, EXD graph and elemental overlay as well. The bacterial EPS production was sensitive to the pH, which caused a major shift in the -NH, -OH, -CH, -C=O, -C-N, -SH, -COO and aromatic/-NO2 peaks of FTIR spectra. Regarding the techno economic analysis, it was revealed that USD 6.24 are required to prepare the BCXZM composite to treat 1000 gallons of drinking water (with 50 µg/L of arsenic). Our findings provide insights (such as adsorbent dose, optimum operating temperature and reaction time, and pollution load) for the potential application of the BCXZM composite as bedding material in fixed-bed bioreactors for the bioremediation of arsenic-contaminated water in future.

13.
Food Res Int ; 157: 111322, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761609

RESUMO

Protein oxidation in meat has received immense attention since it significantly affects the quality of meat-based products. This review sheds light on the effects of protein oxidation on the physicochemical properties of meat and meat-based products during processing, and highlights major quality concerns and challenges to the food industry. Protein oxidation is often initiated by oxidative attack by reactive oxygen species and modifications of side chain amino acids, which may result in protein aggregation, carbonylation, alteration of surface hydrophobicity, and perturbation in primary, secondary and tertiary structures. Thus, protein oxidation during processing (especially thermal treatments) has raised serious concerns about the quality of the final products. These adverse consequences usually intensify with increase in processing temperature and time. Protein oxidation may also cause severe deterioration of nutritional value owing to the loss of essential amino acids and resistance of the oxidized protein molecules to the hydrolytic action of digestive enzymes. In addition, it may promote drip loss and decrease water holding capacity that would eventually negatively impact texture. Furthermore, protein oxidation is closely associated with other processing-induced adverse events, in particular lipid oxidation and formation of toxic Maillard reaction products, such as heterocyclic amines and advanced glycation end-products, but the underlying mechanisms have remained unclear. Several strategies including careful choice of processing methods and use of natural agents, such as polyphenols, hydrocolloids and vitamins alone or in combination have been proposed for the attenuation of protein oxidation and its related undesirable reactions through binding with precursors and/or reactive intermediary compounds.


Assuntos
Aminoácidos , Carne , Aminoácidos/metabolismo , Indústria Alimentícia , Produtos Finais de Glicação Avançada/metabolismo , Músculos/metabolismo , Oxirredução , Proteínas/química
14.
Environ Sci Pollut Res Int ; 28(15): 18870-18892, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33586109

RESUMO

Arsenic (As) bioremediation has been an economical and sustainable approach, being practiced widely under several As-contaminated environments. Bioremediation of As involves the use of bacteria, fungi, yeast, plants, and genetically modified organisms for detoxification/removal of As from the contaminated site. The understanding of multi-factorial biological components involved in these approaches is complex and more and more efforts are on their way to make As bioremediation economical and efficient. In this regard, we systematically reviewed the recent literature (n=200) from the last two decades regarding As bioremediation potential of conventional and recent technologies including genetically modified plants for phytoremediation and integrated approaches. Also, the responsible mechanisms behind different approaches have been identified. From the literature, it was found that As bioremediation through biosorption, bioaccumulation, phytoextraction, and volatilization involving As-resistant microbes has proved a very successful technology. However, there are various pathways of As tolerance of which the mechanisms have not been fully understood. Recently, phytosuction separation technology has been introduced and needs further exploration. Also, integrated approaches like phytobial, constructed wetlands using As-resistant bacteria with plant growth-promoting activities have not been extensively studied. It is speculated that the integrated bioremediation approaches with practical applicability and reliability would prove most promising for As remediation. Further technological advancements would help explore the identified research gaps in different approaches and lead us toward sustainability and perfection in As bioremediation.


Assuntos
Arsênio , Poluentes do Solo , Biodegradação Ambiental , Reprodutibilidade dos Testes , Poluentes do Solo/análise , Tecnologia , Áreas Alagadas
15.
Food Chem ; 339: 127875, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866701

RESUMO

Gluten protein based snacks have been a major concern for allergen, low nutrition and physio-chemical properties. In this study, wheat flour (WF) was replaced with cassava starch (CS) at different levels [10, 20, 30, 40 and 50%(w/w)] to prepare fried snacks. The addition of CS significantly (P < 0.05) increased hardness and pasting properties while gluten network, oil uptake, water holding capacity, and expansion were decreased. Fourier transform infrared spectroscopy revealed that the secondary structure of amide I, α-helix (1650-1660 cm-1), along with amide II region (1540 cm-1) changed when CS was added. Starch-protein complex was identified by X-ray diffraction analysis while no starch-protein-lipid complex was observed. The micrographs from scanning electron microscopy showed that starch-protein matrix was interrupted when ≥40%(w/w) CS was added. Furthermore, in vitro calcium bioavailability was decreased slightly with the addition of CS. The results suggest the feasibility of adding 40% CS as an alternative to WF in snacks.


Assuntos
Digestão , Glutens/química , Manihot/química , Lanches , Triticum/química , Farinha/análise , Dureza , Amido/química , Água/química
16.
Environ Pollut ; 289: 117916, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375849

RESUMO

Low concentrations of vanadium (V) are essential for various plant species but it becomes toxic to plants, animals, and humans at high levels. A significant amount of V is currently being emitted into the atmosphere due to intensified industrial processing. Therefore, this study aimed at evaluating the effect of raw (BC) and HNO3-modified biochar (OBC) derived from rice straw on growth, photosynthetic assimilation, relative chlorophyll content, SPAD index, ion leakage, enzyme activities, hydrogen peroxide (H2O2), bioavailability and V uptake by rice in a laboratory-scale experiment. Characterization of OBC and BC by FTIR (Fourier transform infrared spectroscopy), SEM (scan electron microscopy), BET (Brunauer-Emmett-Teller), elemental analysis, and z-potential revealed a substantial difference between both of them. The V-stress significantly reduced the rice plant growth, biomass yield, chlorophyll parameters, root length and surface area. Under V-stress conditions, root accumulated more V than shoots and OBC significantly improved the above-mentioned parameters, while, decreasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in plants. The antioxidant function and gene expression levels induced by V-stress and OBC application further increased the expression profile of three genes (SOD, POD, and CAT) encoding antioxidant enzymes and one metal-tolerant conferring gene (OsFSD1). In summary, these results demonstrated the critical role of OBC in mitigating the detrimental effects of high V-stress on rice growth and enhancing plant defence against V-stress.


Assuntos
Oryza , Antioxidantes , Carvão Vegetal , Peróxido de Hidrogênio , Oryza/genética , Fotossíntese , Raízes de Plantas , Vanádio
17.
Foods ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681516

RESUMO

Snack foods are consumed around to globe due to their high nutrition, taste and versatility; however, the effects of various processing methods on quality, structure and oxidative properties are scare in the literature. This study aims to evaluate the effect of various processing methods (frying, baking and microwave cooking) on quality, structure, pasting, water distribution and protein oxidative properties of fish meat-based snacks. The results showed that the frying method induced a significantly (p < 0.05) higher expansion than baking and microwave methods. Texture in terms of hardness was attributed to the rapid loss of water from muscle fiber, which resulted in compact structure and the increased hardness in microwave cooking, whereas in frying, due to excessive expansion, the hardness decreased. The pasting properties were significantly higher in baking, indicating the sufficient swelling of starch granules, while low in microwave suggest the rapid heating, which degraded the starch molecules and disruption of hydrogen bonds as well as glycosidic linkage and weakening of granules integrity. The water movement assessed by Low Field Nuclear Magnetic Resonance (LF-NMR) showed that frying had less tight and immobilized water, whereas microwave and baking had high amounts of tight and immobilized water, attributing to the proper starch-protein interaction within matrix, which was also evidenced by scanning electron microscopy (SEM) analysis. The protein oxidation was significantly (p < 0.05) higher in frying compared to baking and microwave cooking. The findings suggest the endorsement of baking and microwave cooking for a quality, safe and healthy snacks.

18.
Environ Pollut ; 291: 118269, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601037

RESUMO

Arsenic contamination of ground water is a worldwide issue, causing a number of ailments in humans. As an engineered and integrated solution, a hybrid vertical subsurface flow constructed wetland (VSSF-CW) amended with BCXZM composite (Bacillus XZM immobilized on rice husk biochar), was found effective for the bioremediation of arsenic contaminated water. Biological filter was prepared by amending top 3 cm of VSSF-CW bed with BCXZM. This filter scavenged ∼64% of total arsenic and removal efficiency of ∼95% was achieved by amended and planted (As + P + B) VSSF-CW, while non-amended (As + P) VSSF-CW showed a removal efficiency of ∼55%. The unplanted and amended (As + B) VSSF-CW showed a removal efficiency of ∼70%. The symbiotic association of Bacillus XZM, confirmed by SEM micrographs, significantly (p ≤ 0.05) reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation in Typha latifolia, hence, increasing the plant growth (2 folds). An increase in the indole acetic acid (IAA) and arsenic accumulation in plant was also observed in As + P + B system. The removal efficiency of the system was compromised after 4th consecutive cycle and 48 h was observed as optimum retention time. The FTIR-spectra showed the involvement of -N-H bond, carboxylic acids, -CH2 stretching of -CH2 and -CH3, carbonyl groups, -C-H, C-O-P and C-O-C, sulphur/thiol and phosphate functional groups in the bio-sorption of arsenic by BCXZM filter. Our study is a first reported on the simultaneous phytoextraction and biosorption of arsenic in a hybrid VSSF-CW. It is proposed that BCXZM can be applied effectively in CWs for the bioremediation of arsenic contaminated water on large scale.


Assuntos
Arsênio , Typhaceae , Poluentes Químicos da Água , Carvão Vegetal , Humanos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
19.
Foods ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34828973

RESUMO

Pectin has been widely used as a hydrocolloid in foods, but its effectiveness based on hydrodynamics radius (Rh), average side chain length (ACL) and degree of esterification (DE) has been less studied. This study investigated the effect of 4 types of pectin (with different molecular weight and structures) at a level of 1.5% w/w of wheat flour on functional, structural and water binding properties of sugar snap cookies partially substituted with fish meat. The results showed that pectin (CU-201 and CU-601) with higher ACL and Rh controlled excessive expansion, while the improved rheology of dough in terms of behavior as viscous matrix compared to control and other pectin. Texture was found to be highly dependent on Rh and ACL compared to DE of pectin. The pasting properties, especially peak viscosity and final viscosity, were significantly (p < 0.05) increased with increasing DE, as well as ACL, by entangling and increasing the interaction between starch and pectin. The scanning electron microscopy (SEM) analysis exhibited that control sample showed wide voids and more intercellular spaces, while samples prepared with CU-601, CU-201, and CUL displayed compact structure, which was also evidenced by controlled expansion and improved hardness of the cookies. Low field nuclear magnetic resonance (LF-NMR) analysis showed that T21 relaxation time and amplitude were found to be shorter for CU-601 and CU-201 treatments, signifying the high amount of tightly bound water compared to control. The findings endorse the feasibility of adding CU-601, and CU-201 as an efficient hydrocolloid for the improved structural and functional properties of cookies.

20.
Environ Sci Pollut Res Int ; 27(30): 37286-37312, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31933079

RESUMO

The advanced oxidation processes (AOPs), especially sulphate radical (SO4•-)-based AOPs (SR-AOPs), have been considered more effective, selective, and prominent technologies for the removal of highly toxic emerging contaminants (ECs) due to wide operational pH range and relatively higher oxidation potential (2.5-3.1 V). Recently, biochar (BC)-based composite materials have been introduced in AOPs due to the dual benefits of adsorption and catalytic degradation, but the scientific review of BC-based catalysts for the generation of reactive oxygen species (ROSs) through radical- and non-radical-oriented routes for EC removal was rarely reported. The chemical treatments, such as acid/base treatment, chemical oxidation, surfactant incorporation, and coating and impregnation of minerals, were applied to make BC suitable as supporting materials (SMs) for the loading of Fenton catalysts to boost up peroxymonosulphate/persulphate/H2O2 activation to get ROSs including •OH, SO4•-, 1O2, and O2•- for targeted pollutant degradation. In this review, all the possible merits of BC-based catalysts including supportive, adsorptive, and catalytic role are summarised along with the possible route for the development prospects of BC properties. The limitations of SR-AOPs especially on production of non-desired oxyanions, as well as disinfection intermediates and their potential solutions, have been identified. Lastly, the knowledge gap and future-oriented research needs are highlighted.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Peróxido de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA