Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Imaging ; 2022: 4419221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721730

RESUMO

Positron emission tomography (PET) using the radiotracer [18F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [18F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant K i Mod of [18F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values. However, chronic intravenous catheters are technically difficult to maintain for longitudinal studies. Hence, in this study, intraperitoneal administration of [18F]-FDOPA was evaluated as a less-invasive alternative that facilitates longitudinal imaging. Our experiments comprised the following assessments: (i) comparison of [18F]-FDOPA uptake between intravenous and intraperitoneal radiotracer administration and optimisation of the time window used for extended Patlak analysis, (ii) comparison of Ki Mod in a within-subject design of both administration routes, (iii) test-retest evaluation of Ki Mod in a within-subject design of intraperitoneal radiotracer administration, and (iv) validation of Ki Mod estimates by comparing the two administration routes in a mouse model of hyperdopaminergia induced by subchronic ketamine. Our results demonstrate that intraperitoneal [18F]-FDOPA administration resulted in good brain uptake, with no significant effect of administration route on Ki Mod estimates (intraperitoneal: 0.024 ± 0.0047 min-1, intravenous: 0.022 ± 0.0041 min-1, p = 0.42) and similar coefficient of variation (intraperitoneal: 19.6%; intravenous: 18.4%). The technique had a moderate test-retest validity (intraclass correlation coefficient (ICC) = 0.52, N = 6) and thus supports longitudinal studies. Following subchronic ketamine administration, elevated K i Mod as compared to control condition was measured with a large effect size for both methods (intraperitoneal: Cohen's d = 1.3; intravenous: Cohen's d = 0.9), providing further evidence that ketamine has lasting effects on the dopamine system, which could contribute to its therapeutic actions and/or abuse liability.


Assuntos
Dopamina , Ketamina , Humanos , Animais , Camundongos , Tomografia por Emissão de Pósitrons , Encéfalo , Modelos Animais de Doenças
2.
Mol Psychiatry ; 26(6): 2562-2576, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32382134

RESUMO

Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for  treating major depression.


Assuntos
Ketamina , Esquizofrenia , Animais , Dopamina , Humanos , Ketamina/farmacologia , Camundongos , Piranos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
3.
Brain ; 143(3): 811-832, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125365

RESUMO

Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28-30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.


Assuntos
Terapia Genética , Isoformas de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Adenoviridae , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/biossíntese , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Sinapses/metabolismo , Transfecção
4.
Proc Natl Acad Sci U S A ; 113(43): 12292-12297, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791018

RESUMO

Current therapies for Alzheimer's disease (AD) are symptomatic and do not target the underlying Aß pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of ß-APP cleaving enzyme (BACE1), the main enzyme involved in Aß generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aß deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aß pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Regulação da Expressão Gênica/genética , Vetores Genéticos/uso terapêutico , Humanos , Lentivirus/genética , Memória/fisiologia , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/administração & dosagem , Agregação Patológica de Proteínas/terapia , Células Piramidais/metabolismo , Células Piramidais/patologia
5.
Learn Mem ; 23(4): 174-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26980786

RESUMO

Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K+ channel function. Phosphorylation of K()channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies of vertebrates and invertebrates, the contribution to memory of single phosphorylation sites on K+ channels has never been reported. We have used gene targeting in mice to inactivate protein kinase A substrate residues in the fast-inactivating subunit Kv4.2 (T38A mutants), and in the small-conductance Ca2+ -activated subunit SK1 (S105A mutants). Both manipulations perturbed a specific form of memory, leaving others intact. T38A mutants had enhanced spatial memory for at least 4 wk after training, whereas performance in three tests of fear memory was unaffected. S105A mutants were impaired in passive avoidance memory, sparing fear, and spatial memory. Together with recent findings that excitability governs the participation of neurons in a memory circuit, this result suggests that the memory type supported by neurons may depend critically on the phosphorylation of specific K+ channels at single residues.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Medo/fisiologia , Canais de Potássio Shal/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Memória Espacial/fisiologia , Animais , Condicionamento Clássico/fisiologia , Eletrochoque , Feminino , Marcação de Genes , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Canais de Potássio Shal/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
6.
Hippocampus ; 24(12): 1413-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25208523

RESUMO

Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3ß, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3ß rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3ß that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease.


Assuntos
Região CA1 Hipocampal/enzimologia , Região CA3 Hipocampal/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/enzimologia , Envelhecimento/fisiologia , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/crescimento & desenvolvimento , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Isoenzimas , Masculino , Camundongos Transgênicos , Mutação , Técnicas de Cultura de Tecidos
7.
Proc Natl Acad Sci U S A ; 108(45): 18471-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025701

RESUMO

Long-term memory (LTM) formation has been linked with functional strengthening of existing synapses and other processes including de novo synaptogenesis. However, it is unclear whether synaptogenesis can contribute to LTM formation. Here, using α-calcium/calmodulin kinase II autophosphorylation-deficient (T286A) mutants, we demonstrate that when functional strengthening is severely impaired, contextual LTM formation is linked with training-induced PSD95 up-regulation followed by persistent generation of multiinnervated spines, a type of synapse that is characterized by several presynaptic terminals contacting the same postsynaptic spine. Both PSD95 up-regulation and contextual LTM formation in T286A mutants required signaling by the mammalian target of rapamycin (mTOR). Furthermore, we show that contextual LTM resists destabilization in T286A mutants, indicating that LTM is less flexible when synaptic strengthening is impaired. Taken together, we suggest that activation of mTOR signaling, followed by overexpression of PSD95 protein and synaptogenesis, contributes to formation of invariant LTM when functional strengthening is impaired.


Assuntos
Memória de Longo Prazo , Sinapses/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large , Genes Precoces , Guanilato Quinases/farmacologia , Hipocampo/metabolismo , Proteínas de Membrana/farmacologia , Camundongos , Fosforilação , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Sci Rep ; 14(1): 8528, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609446

RESUMO

We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring.


Assuntos
Dieta com Restrição de Proteínas , Dopamina , Animais , Feminino , Camundongos , Gravidez , Alelos , Inibidor de Quinase Dependente de Ciclina p57 , Neurônios , Comportamento Animal
9.
Nat Aging ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210150

RESUMO

Inhibition of S6 kinase 1 (S6K1) extends lifespan and improves healthspan in mice, but the underlying mechanisms are unclear. Cellular senescence is a stable growth arrest accompanied by an inflammatory senescence-associated secretory phenotype (SASP). Cellular senescence and SASP-mediated chronic inflammation contribute to age-related pathology, but the specific role of S6K1 has not been determined. Here we show that S6K1 deletion does not reduce senescence but ameliorates inflammation in aged mouse livers. Using human and mouse models of senescence, we demonstrate that reduced inflammation is a liver-intrinsic effect associated with S6K deletion. Specifically, we show that S6K1 deletion results in reduced IRF3 activation; impaired production of cytokines, such as IL1ß; and reduced immune infiltration. Using either liver-specific or myeloid-specific S6K knockout mice, we also demonstrate that reduced immune infiltration and clearance of senescent cells is a hepatocyte-intrinsic phenomenon. Overall, deletion of S6K reduces inflammation in the liver, suggesting that suppression of the inflammatory SASP by loss of S6K could underlie the beneficial effects of inhibiting this pathway on healthspan and lifespan.

10.
Mol Imaging Biol ; 25(6): 1054-1062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872462

RESUMO

PURPOSE: There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES: Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS: Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS: Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity.


Assuntos
Dopamina , Ketamina , Humanos , Adulto , Masculino , Animais , Camundongos , Ketamina/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Camundongos Endogâmicos C57BL , Di-Hidroxifenilalanina , Tomografia por Emissão de Pósitrons/métodos , Corpo Estriado , Mesencéfalo/diagnóstico por imagem
11.
Learn Mem ; 18(6): 375-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21597043

RESUMO

Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Memória/fisiologia , Análise de Variância , Animais , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Comportamento Exploratório/fisiologia , Medo , Guanilato Quinases/metabolismo , Hipocampo/citologia , Proteínas Substratos do Receptor de Insulina/deficiência , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Teste de Desempenho do Rota-Rod/métodos , Deleção de Sequência/genética
12.
J Clin Invest ; 130(1): 126-142, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557134

RESUMO

Arcuate nucleus agouti-related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs, and other behaviors, implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown. Here, we show that nociceptin-expressing neurons in the anterior bed nuclei of the stria terminalis (aBNST) make direct GABAergic inputs onto AgRP neurons. We found that activation of these neurons inhibited AgRP neurons and feeding. The activity of these neurons increased upon food availability, and their ablation resulted in obesity. Furthermore, these neurons received afferent inputs from a range of upstream brain regions as well as hypothalamic nuclei. Therefore, aBNST GABAergic nociceptin neurons may act as a gateway to feeding behavior by connecting AgRP neurons to both homeostatic and nonhomeostatic neuronal inputs.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Núcleo Arqueado do Hipotálamo/fisiologia , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Peptídeos Opioides/fisiologia , Núcleos Septais/fisiologia , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/fisiologia , Nociceptina
13.
Biochem Biophys Res Commun ; 386(1): 257-62, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19523444

RESUMO

As impaired insulin signalling (IIS) is a risk factor for Alzheimer's disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2(-/-)) mice which develop insulin resistance. The resulting Tg2576/Irs2(-/-) animals had increased tau phosphorylation but a paradoxical amelioration of Abeta pathology. An increase of the Abeta binding protein transthyretin suggests that increased clearance of Abeta underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes-a reduction in aggregated Abeta but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Memória , Doença de Alzheimer/metabolismo , Animais , Deleção de Genes , Hipocampo/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/metabolismo
14.
Nat Neurosci ; 8(4): 411-2, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15778710

RESUMO

Autophosphorylation of alpha calcium-calmodulin-dependent kinase II (alphaCaMKII) has been proposed to be the key event in memory storage. We tested this hypothesis with autophosphorylation-deficient mutant mice in hippocampus- and amygdala-dependent learning and memory tasks and found that the autophosphorylation of alphaCaMKII was required for rapid learning but was not essential for memory. We conclude that alphaCaMKII autophosphorylation contributes to single-trial learning but is dispensable for memory.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Estimulação Acústica/métodos , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Eletrochoque/efeitos adversos , Medo , Feminino , Reação de Congelamento Cataléptica/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Tempo de Reação/genética , Estatísticas não Paramétricas , Fatores de Tempo
15.
Sci Rep ; 9(1): 16133, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695068

RESUMO

Huntington's disease (HD) is a fatal inherited autosomal dominant neurodegenerative disorder caused by an expansion in the number of CAG trinucleotide repeats in the huntingtin gene. The disease is characterized by motor, behavioural and cognitive symptoms for which at present there are no disease altering treatments. It has been shown that manipulating the mTOR (mammalian target of rapamycin) pathway using rapamycin or its analogue CCI-779 can improve the cellular and behavioural phenotypes of HD models. Ribosomal protein S6 kinase 1 (S6K1) is a major downstream signalling molecule of mTOR, and its activity is reduced by rapamycin suggesting that deregulation of S6K1 activity may be beneficial in HD. Furthermore, S6k1 knockout mice have increased lifespan and improvement in age-related phenotypes. To evalute the potential benefit of S6k1 loss on HD-related phenotypes, we crossed the R6/2 HD model with the long-lived S6k1 knockout mouse line. We found that S6k1 knockout does not ameliorate behavioural or physiological phenotypes in the R6/2 mouse model. Additionally, no improvements were seen in brain mass reduction or mutant huntingtin protein aggregate levels. Therefore, these results suggest that while a reduction in S6K1 signalling has beneficial effects on ageing it is unlikely to be a therapeutic strategy for HD patients.


Assuntos
Deleção de Genes , Doença de Huntington/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
17.
Mol Metab ; 20: 38-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553769

RESUMO

OBJECTIVE: Sympathetic nervous system and immune cell interactions play key roles in the regulation of metabolism. For example, recent convergent studies have shown that macrophages regulate obesity through brown adipose tissue (BAT) activation and beiging of white adipose tissue (WAT) via effects upon local catecholamine availability. However, these studies have raised issues about the underlying mechanisms involved including questions regarding the production of catecholamines by macrophages, the role of macrophage polarization state and the underlying intracellular signaling pathways in macrophages that might mediate these effects. METHODS: To address such issues we generated mice lacking Irs2, which mediates the effects of insulin and interleukin 4, specifically in LyzM expressing cells (Irs2LyzM-/- mice). RESULTS: These animals displayed obesity resistance and preservation of glucose homeostasis on high fat diet feeding due to increased energy expenditure via enhanced BAT activity and WAT beiging. Macrophages per se did not produce catecholamines but Irs2LyzM-/- mice displayed increased sympathetic nerve density and catecholamine availability in adipose tissue. Irs2-deficient macrophages displayed an anti-inflammatory transcriptional profile and alterations in genes involved in scavenging catecholamines and supporting increased sympathetic innervation. CONCLUSIONS: Our studies identify a critical macrophage signaling pathway involved in the regulation of adipose tissue sympathetic nerve function that, in turn, mediates key neuroimmune effects upon systemic metabolism. The insights gained may open therapeutic opportunities for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Células Precursoras de Monócitos e Macrófagos/metabolismo , Obesidade/genética , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Catecolaminas/metabolismo , Células Cultivadas , Metabolismo Energético , Deleção de Genes , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sistema Nervoso Simpático/fisiologia
18.
Nat Metab ; 1(11): 1074-1088, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799499

RESUMO

Senescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases. Here, we show that the cardiac glycoside, ouabain, is a senolytic agent with broad activity. Senescent cells are sensitized to ouabain-induced apoptosis, a process mediated in part by induction of the pro-apoptotic Bcl2-family protein NOXA. We show that cardiac glycosides synergize with anti-cancer drugs to kill tumor cells and eliminate senescent cells that accumulate after irradiation or in old mice. Ouabain also eliminates senescent preneoplastic cells. Our findings suggest that cardiac glycosides may be effective anti-cancer drugs by acting through multiple mechanism. Given the broad range of senescent cells targeted by cardiac glycosides their use against age-related diseases warrants further exploration.


Assuntos
Glicosídeos Cardíacos/farmacologia , Senescência Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Camundongos , Ouabaína/farmacologia , Quercetina/farmacologia , Ratos
19.
Trends Neurosci ; 29(8): 459-65, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16806507

RESUMO

Alpha Ca(2+)/calmodulin-dependent kinase II (alphaCaMKII), the major synaptic protein in the forebrain, can switch into a state of autonomous activity upon autophosphorylation. It has been proposed that alphaCaMKII autophosphorylation mediates long-term memory (LTM) storage. However, recent evidence shows that synaptic stimulation and behavioural training only transiently increase the autonomous alphaCaMKII activity, implicating alphaCaMKII autophosphorylation in LTM formation rather than storage. Consistent with this, mutant mice deficient in alphaCaMKII autophosphorylation can store LTM after a massed training protocol, but cannot form LTM after a single trial. Here, we review evidence that the role of alphaCaMKII autophosphorylation is in fact to enable LTM formation after a single training trial, possibly by regulating LTM consolidation-specific transcription.


Assuntos
Memória/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Humanos , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética
20.
Learn Mem ; 14(10): 693-702, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17911373

RESUMO

Gene transcription is required for long-term memory (LTM) formation. LTM formation is impaired in a male-specific manner in mice lacking either of the two Ca(2+)/calmodulin-dependent kinase kinase (Camkk) genes. Since altered transcription was suggested to cause these impairments in LTM formation, we used microarrays to screen for CaMKKbeta-dependent gene expression changes. Here we show that the hippocampal mRNA expression of two splicing factors, splicing factor arginine/serine-rich 3 (Sfrs3/Srp20) and polypyrimidine tract-binding protein-associated splicing factor (Psf), is altered in CaMKKbeta-deficient males. In wild-type (WT) mice, the basal expression level in the hippocampus is higher in males than in females, and the sex difference in Srp20 expression is detectable before puberty. Training in two hippocampus-dependent learning tasks, the spatial version of the Morris water maze (MWM) and background contextual fear conditioning, increases the hippocampal mRNA expression of both splicing factors in WT males. However, the increase in Srp20 mRNA expression occurs only in males and not in females, whereas the up-regulation of Psf expression occurs in both sexes. Importantly, control experiments demonstrate that the up-regulation of both splicing factors is specific for the learned associations after contextual fear conditioning. In summary, we provide the first evidence for a regulation of splicing factors during LTM formation and we suggest that alternative splicing contributes to sex differences in LTM formation.


Assuntos
Processamento Alternativo/genética , Aprendizagem da Esquiva/fisiologia , Regulação da Expressão Gênica , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas de Ligação a RNA/biossíntese , Caracteres Sexuais , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Condicionamento Clássico/fisiologia , Medo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Fator de Processamento Associado a PTB , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA