Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687787

RESUMO

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Assuntos
Cervos , Flavivirus , Metagenômica , Carrapatos , Animais , Metagenômica/métodos , Japão/epidemiologia , Cervos/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Carrapatos/virologia , Filogenia , Viroma/genética , Vírion/genética , Sus scrofa/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Soroepidemiológicos , Genoma Viral
2.
Jpn J Infect Dis ; 77(3): 174-177, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38171848

RESUMO

In 2010, Jingmen tick virus (JMTV) was discovered in ticks in China and has been shown to be distributed in several regions worldwide. Recently, cases of JMTV infection in humans have been reported in China and Kosovo, and have attracted much attention as an emerging tick-borne disease. In this study, we detected the JMTV genome in Amblyomma testudinarium ticks collected in Kanagawa Prefecture, Japan, during tick-borne virus surveillance conducted in the Kanto Region. Phylogenetic analysis revealed that the new JMTV strain was closely related to previous strains detected in Japan. This suggests that JMTV may have been maintained during an independent natural transmission cycle in Japan. In addition, unlike other countries and regions, all JMTV strains in Japan were detected only in A. testudinarium ticks, suggesting that this tick species is the primary JMTV vector in Japan. This is the first report of JMTV in the Kanto Region. Further studies are required to elucidate the potential risk of infection with this tick-borne virus in Japan. In particular, the prevalence of JMTV in wild animals should be examined to clarify its geographical distribution, host range, and transmission cycle.


Assuntos
Amblyomma , Genoma Viral , Filogenia , Animais , Japão/epidemiologia , Amblyomma/virologia , Feminino , Ixodidae/virologia
3.
J Vet Med Sci ; 86(8): 866-871, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38880612

RESUMO

Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.


Assuntos
Coltivirus , Ixodidae , Filogenia , Animais , Japão , Feminino , Ixodidae/virologia , Coltivirus/genética , Coltivirus/isolamento & purificação , Coltivirus/classificação , Genoma Viral
4.
J Virol Methods ; 325: 114887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237867

RESUMO

Mosquitoes are important vectors of various pathogenic viruses. Almost all viruses transmitted by mosquitoes are RNA viruses. Therefore, to detect viral genes, mosquito samples must be kept at low temperatures to prevent RNA degradation. However, prolonged transport from the field to laboratory can pose challenges for temperature control. The aim of this study was to evaluate methods for preserving viral RNA in mosquito bodies at room temperature. Virus-infected mosquito samples were immersed in ethanol, propylene glycol, and a commercially available nucleic acid preservation reagent at room temperature, and viral RNA stability was compared. As a result, for the two RNA viruses (San Gabriel mononegavirus and dengue virus 1) subjected to this experiment, no significant decrease in the viral RNA was observed for at least eight weeks after immersion in the reagents, and the amount of RNA remaining was equivalent to that of samples stored at - 80 °C. These results indicate that immersion storage in these reagents used in this study is effective in preserving viral RNA in mosquitoes under room temperature conditions and is expected to be implemented in epidemiologic surveillance that is not limited by the cold chain from the field to the laboratory.


Assuntos
Aedes , Culicidae , Animais , Temperatura , RNA Viral/genética , Mosquitos Vetores
5.
Artigo em Inglês | MEDLINE | ID: mdl-38961045

RESUMO

Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.

6.
J Med Entomol ; 61(3): 741-755, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417093

RESUMO

Arthropod-derived cell lines serve as crucial tools for studying arthropod-borne viruses (arboviruses). However, it has recently come to light that certain cell lines harbor persistent infections of arthropod-specific viruses, which do not cause any apparent cytopathic effects. Moreover, some of these persistent viral infections either inhibit or promote the growth of arboviruses. Therefore, it is of utmost importance to identify the presence of such persistent viruses and understand their impact on arboviral infections. In this study, we conducted a comprehensive virome analysis of several arthropod-derived cell lines, including mosquito-derived NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, CCL-126 cells, and tick-derived IDE8 cells, along with flesh fly-derived NIH-Sape-4 cells. The aim was to determine if these cells were infected with persistent viruses. The results revealed the presence of 15 persistent viruses in NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, and IDE8 cells. Among these, 11 were already known arthropod-specific viruses, while the remaining 4 were novel viruses belonging to Orthophasmavirus, Rhabdoviridae, Totiviridae, and Bunyavirales. In contrast, CCL-126 and NIH-Sape-4 cells appeared to be free of viral infections. This study provides valuable insights into the diversity and latency of arthropod-specific viruses within arthropod-derived cell lines. Further investigations are required to explore persistent viral infections in other arthropod-derived cell cultures and their effects on arbovirus replication. Understanding these factors will enhance the accuracy and reliability of experimental data obtained using these cell lines.


Assuntos
Viroma , Animais , Linhagem Celular , Arbovírus/fisiologia , Artrópodes/virologia , Carrapatos/virologia , Culicidae/virologia
7.
Sci Rep ; 14(1): 10285, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704404

RESUMO

High pathogenicity avian influenza (HPAI) poses a significant threat to both domestic and wild birds globally. The avian influenza virus, known for environmental contamination and subsequent oral infection in birds, necessitates careful consideration of alternative introduction routes during HPAI outbreaks. This study focuses on blowflies (genus Calliphora), in particular Calliphora nigribarbis, attracted to decaying animals and feces, which migrate to lowland areas of Japan from northern or mountainous regions in early winter, coinciding with HPAI season. Our investigation aims to delineate the role of blowflies as HPAI vectors by conducting a virus prevalence survey in a wild bird HPAI-enzootic area. In December 2022, 648 Calliphora nigribarbis were collected. Influenza virus RT-PCR testing identified 14 virus-positive samples (2.2% prevalence), with the highest occurrence observed near the crane colony (14.9%). Subtyping revealed the presence of H5N1 and HxN1 in some samples. Subsequent collections in December 2023 identified one HPAI virus-positive specimen from 608 collected flies in total, underscoring the potential involvement of blowflies in HPAI transmission. Our observations suggest C. nigribarbis may acquire the HPAI virus from deceased wild birds directly or from fecal materials from infected birds, highlighting the need to add blowflies as a target of HPAI vector control.


Assuntos
Aves , Influenza Aviária , Animais , Japão/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Aves/virologia , Insetos Vetores/virologia , Calliphoridae , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Fezes/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA