Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 15(5): 449-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681564

RESUMO

The physiological functions of members of the tumor-necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family in T cell immunity are not well understood. We found that in the presence of interleukin 6 (IL-6), naive TRAF5-deficient CD4(+) T cells showed an enhanced ability to differentiate into the TH17 subset of helper T cells. Accordingly, TH17 cell-associated experimental autoimmune encephalomyelitis (EAE) was greatly exaggerated in Traf5(-/-) mice. Although it is normally linked with TNFR signaling pathways, TRAF5 constitutively associated with a cytoplasmic region in the signal-transducing receptor gp130 that overlaps with the binding site for the transcription activator STAT3 and suppressed the recruitment and activation of STAT3 in response to IL-6. Our results identify TRAF5 as a negative regulator of the IL-6 receptor signaling pathway that limits the induction of proinflammatory CD4(+) T cells that require IL-6 for their development.


Assuntos
Receptor gp130 de Citocina/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Subpopulações de Linfócitos T/imunologia , Fator 5 Associado a Receptor de TNF/metabolismo , Células Th17/imunologia , Animais , Antígenos CD4/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Progressão da Doença , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Fator 5 Associado a Receptor de TNF/genética , Ativação Transcricional/genética
2.
J Immunol ; 208(3): 642-650, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34996840

RESUMO

TNF receptor-associated factor 5 (TRAF5) restrains early signaling activity of the IL-6 receptor in naive CD4+ T cells by interacting with the shared gp130 chain, although TRAF5 was initially discovered as a cytoplasmic adaptor protein to activate signaling mediated by TNF receptor family molecules. This leads to the question of whether TRAF5 limits signaling via the receptor for IL-27, which is composed of gp130 and WSX-1. The aim of this study is to clarify the role of TRAF5 in IL-27 receptor signaling and to understand the differential role of TRAF5 on cytokine receptor signaling. We found that Traf5 -/- CD4+ T cells displayed significantly higher levels of phosphorylated STAT1 and STAT-regulated genes Socs3 and Tbx21, as early as 1 h after IL-27 exposure when compared with Traf5 +/+ CD4+ T cells. Upon IL-27 and TCR signals, the Traf5 deficiency significantly increased the induction of IL-10 and promoted the proliferation of CD4+ T cells. Traf5 -/- mice injected with IL-27 displayed significantly enhanced delayed-type hypersensitivity responses, demonstrating that TRAF5 works as a negative regulator for IL-27 receptor signaling. In contrast, IL-2 and proliferation mediated by glucocorticoid-induced TNF receptor-related protein (GITR) and TCR signals were significantly decreased in Traf5 -/- CD4+ T cells, confirming that TRAF5 works as a positive regulator for cosignaling via GITR. Collectively, our results demonstrate that TRAF5 reciprocally controls signals mediated by the IL-27 receptor and GITR in CD4+ T cells and suggest that the regulatory activity of TRAF5 in gp130 is distinct from that in TNF receptor family molecules in a T cell.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptor gp130 de Citocina/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Proliferação de Células , Hipersensibilidade Tardia/imunologia , Interleucina-10/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas com Domínio T/metabolismo , Fator 5 Associado a Receptor de TNF/genética
3.
Biochem Biophys Res Commun ; 637: 9-16, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375254

RESUMO

Group 2 innate lymphoid cells (ILC2s) are resident cells and participate in innate and adaptive immunity. In the tumor microenvironment (TME), ILC2s contribute to both tumorigenesis and inhibition of tumor growth, but the true role of ILC2s in TME construction remains unclear. We show that IL-33 treatment induces an anti-tumor effect in vivo in a mouse model of melanoma in which ILC2s and CD8+ T cells infiltrate into tumor tissue. This anti-tumor effect is dependent on CD8+ T cells, however, IL-33 does not act directly on CD8+ T cells because the cells lack ST2, the receptor for IL-33. ILC2s and CD8+ T cells in tumors of IL-33-treated mice express OX40 ligand (OX40L) and OX40, respectively, and in vivo blockade of OX40L-OX40 interaction canceled the anti-tumor effect of IL-33. Co-culture of CD8+ T cells expressing OX40 with IL-33-stimulated ILC2 expressing OX40L promoted cell activation and proliferation of CD8+ T cells, which was significantly suppressed by administration of anti-OX40L blocking antibody. Thus, the IL-33-ILC2 axis promotes CD8+ T cell responses via OX40/OX40L interaction and exerts an anti-tumor effect.


Assuntos
Linfócitos T CD8-Positivos , Imunidade Inata , Interleucina-33 , Neoplasias , Receptores OX40 , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Ligante OX40/imunologia , Receptores OX40/imunologia , Neoplasias/imunologia
4.
Dig Dis Sci ; 67(4): 1252-1259, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33818662

RESUMO

BACKGROUND: The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear. AIMS: To investigate the role of IκB-ζ in gut homeostasis. METHODS: DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS. RESULTS: IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype. CONCLUSION: IκB-ζ plays a crucial role in maintaining homeostasis in the gut.


Assuntos
Colite , Animais , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Homeostase , Humanos , Interferon gama , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
Biol Pharm Bull ; 45(12): 1798-1804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36450532

RESUMO

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is induced on activated T cells. Membrane-bound OX40 ligand (OX40L) expressed by activated antigen-presenting cells induces OX40 signaling, which promotes T cell immunity. OX40 agonism would be a potential target for immunotherapy, however, it remains unclear how the activity of OX40 can be successfully controlled by a designer OX40L protein. We prepared a soluble OX40L protein possessing a PA-peptide tag and a collagenous trimerization domain from mannose-binding lectin (MBL), and tested whether PA-MBL-OX40L fusion protein worked as an agonist for OX40. We found that the majority of recombinant PA-MBL-OX40L protein purified from culture supernatants displayed a trimer structure and bound to cell surface OX40 or OX40-Fc fusion protein in a dose-dependent manner. Upon stimulation of CD4+ T cells with TCR/CD3 without CD28, PA-MBL-OX40L displayed significantly increased proliferative and cytokine responses when compared with a benchmark agonistic monoclonal antibody for OX40. Both soluble and immobilized forms of PA-MBL-OX40L induced potent OX40 signaling in CD4+ T cells. Mice administered with PA-MBL-OX40L displayed significantly augmented T cell-mediated delayed-type hypersensitivity responses. Our results suggest that activity of OX40L could be engineered to elicit better T cell responses by rational design of its assembly and architecture.


Assuntos
Ligante OX40 , Linfócitos T , Animais , Camundongos , Linfócitos T CD4-Positivos , Fatores Imunológicos , Imunoterapia
6.
J Cell Physiol ; 236(11): 7554-7564, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973242

RESUMO

Growing evidence suggest the association between Moyamoya disease (MMD) and immune systems, such as antigen presenting cells in particular. Rnf213 gene, a susceptibility gene for MMD, is highly expressed in immune tissues, however, its function remains unclear. In addition, the physiological role of RNF213 gene polymorphism c.14576G > A (rs112735431), susceptibility variant for MMD, is also poorly understood. By studying Rnf213-knockout (Rnf213-KO) mice with deletion of largest exon32 and Rnf213-knockin (Rnf213-KI) mice with insertion of single-nucleotide polymorphism corresponding to c.14576G > A mutation in MMD patients, we aimed to investigate the role of RNF213 in dendritic cell development, and antigen processing and presentation. First, we found a high level of Rnf213 gene expression in conventional DCs and monocytes. Second, flow cytometric and confocal microscopic analysis revealed ovalbumin protein-pulsed Rnf213-KO and Rnf213-KI DCs showed impaired antigen uptake, proteolysis and reduced numbers of endosomes and lysosomes, and thereby failed to activate and proliferate antigen-specific T cells efficiently. In addition, Rnf213-KI DCs showed a similar phenotype to that of Rnf213-KO BMDCs. In conclusion, our findings suggest the critical role of RNF213 in antigen uptake, processing and presentation.


Assuntos
Adenosina Trifosfatases/metabolismo , Apresentação de Antígeno , Antígenos/metabolismo , Células Dendríticas/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Animais , Antígenos/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Camundongos Knockout , Doença de Moyamoya/genética , Doença de Moyamoya/imunologia , Doença de Moyamoya/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/genética
7.
Allergy ; 76(6): 1776-1788, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33090507

RESUMO

BACKGROUND: Fatty acid-binding protein 3 (FABP3) is a cytosolic carrier protein of polyunsaturated fatty acids (PUFAs) and regulates cellular metabolism. However, the physiological functions of FABP3 in immune cells and how FABP3 regulates inflammatory responses remain unclear. METHODS: Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin wild-type and Fabp3-/- mice. Skin inflammation was assessed using FACS, histological, and qPCR analyses. The development of γ/δ T cells was evaluated by a co-culture system with OP9/Dll1 cells in the presence or absence of transgene of FABP3. RESULTS: Fabp3-deficient mice exhibit a more severe phenotype of contact hypersensitivity (CHS) accompanied by infiltration of IL-17-producing Vγ4+ γ/δ T cells that critically control skin inflammation. In Fabp3-/- mice, we found a larger proportion of Vγ4+ γ/δ T cells in the skin, even though the percentage of total γ/δ T cells did not change at steady state. Similarly, juvenile Fabp3-/- mice also contained a higher amount of Vγ4+ γ/δ T cells not only in the skin but in the thymus when compared with wild-type mice. Furthermore, thymic double-negative (DN) cells expressed FABP3, and FABP3 negatively regulates the development of Vγ4+ γ/δ T cells in the thymus. CONCLUSIONS: These findings suggest that FABP3 functions as a negative regulator of skin inflammation through limiting pathogenic Vγ4+ γ/δ T-cell generation in the thymus.


Assuntos
Dermatite de Contato , Linfócitos T , Animais , Dermatite de Contato/genética , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
8.
Int Immunol ; 32(4): 233-241, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31819988

RESUMO

Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.


Assuntos
Pulmão/imunologia , Linfócitos/imunologia , Proteínas Ativadoras de ras GTPase/imunologia , Animais , Homeostase/imunologia , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Ativadoras de ras GTPase/deficiência
9.
Int Immunol ; 32(4): 283-292, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31954058

RESUMO

Nephrotic syndrome (NS) is a renal disease characterized by severe proteinuria and hypoproteinemia. Although several single-gene mutations have been associated with steroid-resistant NS, causative genes for steroid-sensitive NS (SSNS) have not been clarified. While seeking to identify causative genes associated with SSNS by whole-exome sequencing, we found compound heterozygous variants/mutations (c.524T>C; p.I175T and c.662G>A; p.R221H) of the interleukin-1 receptor accessory protein (IL1RAP) gene in two siblings with SSNS. The siblings' parents are healthy, and each parent carries a different heterozygous IL1RAP variant/mutation. Since IL1RAP is a critical subunit of the functional interleukin-1 receptor (IL-1R), we investigated the effect of these variants on IL-1R subunit function. When stimulated with IL-1ß, peripheral blood mononuclear cells from the siblings with SSNS produced markedly lower levels of cytokines compared with cells from healthy family members. Moreover, IL-1R with a variant IL1RAP subunit, reconstituted on a hematopoietic cell line, had impaired binding ability and low reactivity to IL-1ß. Thus, the amino acid substitutions in IL1RAP found in these NS patients are dysfunctional variants/mutations. Furthermore, in the kidney of Il1rap-/- mice, the number of myeloid-derived suppressor cells, which require IL-1ß for their differentiation, was markedly reduced although these mice did not show significantly increased proteinuria in acute nephrotic injury with lipopolysaccharide treatment. Together, these results identify two IL1RAP variants/mutations in humans for the first time and suggest that IL1RAP might be a causative gene for familial NS.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/genética , Síndrome Nefrótica/genética , Esteroides/efeitos adversos , Animais , Pré-Escolar , Feminino , Variação Genética , Humanos , Recém-Nascido , Proteína Acessória do Receptor de Interleucina-1/sangue , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/tratamento farmacológico , Irmãos , Esteroides/uso terapêutico
10.
FASEB J ; 34(1): 540-554, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914585

RESUMO

A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Receptores OX40/metabolismo , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores OX40/genética , Transdução de Sinais
11.
FASEB J ; 34(11): 14820-14831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910505

RESUMO

Glucocorticoid-induced TNFR family related gene (GITR) is a member of the TNFR superfamily that is expressed on cells of the immune system. Although the protective and pathogenic roles of GITR in T cell immunity are well characterized, the role of GITR in innate immunity in the intestinal tissues has not been well clarified. In this study, using a dextran sulfate sodium (DSS)-induced colitis model in mice, we found that GITR-deficiency rendered mice more susceptible to acute intestinal inflammation and that a significantly higher number of activated natural killer (NK) cells was accumulated in the colonic lamina propria of Gitr-/- mice as compared to wild-type mice. Additionally, Rag2-/- Gitr-/- mice, which lack T cells but have NK cells, also displayed more severe colonic inflammation than Rag2-/- mice. In contrast, an anti-GITR agonistic antibody significantly alleviated colitis in Rag2-/- mice. Engagement of GITR inhibited IL-15-mediated activating signaling events in NK cells, which include cell activation and proliferation, and production of cytokines and cytotoxic granules. Taken together, our results provide the first evidence that GITR negatively controls intestinal inflammation through NK cell functions.


Assuntos
Colite Ulcerativa/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Animais , Células Cultivadas , Colite Ulcerativa/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Interleucina-15/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
12.
J Immunol ; 203(6): 1447-1456, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420465

RESUMO

The physiological functions of TNF receptor-associated factor 5 (TRAF5) in the skin inflammation and wound healing process are not well characterized. We found that Traf5 -/- mice exhibited an accelerated skin wound healing as compared with wild-type counterparts. The augmented wound closure in Traf5 -/- mice was associated with a massive accumulation of plasmacytoid dendritic cells (pDCs) into skin wounds and an enhanced expression of genes related to wound repair at skin sites. In accordance with this result, adoptive transfer of Traf5 -/- pDCs, but not wild-type pDCs, into the injured skin area in wild-type recipient mice significantly promoted skin wound healing. The expression of skin-tropic chemokine receptor CXCR3 was significantly upregulated in Traf5-/- pDCs, and treatment with a CXCR3 inhibitor cancelled the promoted wound healing in Traf5-/- mice, suggesting a pivotal role of CXCR3 in pDC-dependent wound healing. Traf5 -/- pDCs displayed significantly higher expression of IFN regulatory factor 5 (IRF5), which correlated with greater induction of proinflammatory cytokine genes and CXCR3 protein after stimulation with TLR ligands. Consistently, transduction of exogeneous TRAF5 in Traf5-/- pDCs normalized the levels of abnormally elevated proinflammatory molecules, including IRF5 and CXCR3. Furthermore, knockdown of IRF5 also rescued the abnormal phenotypes of Traf5-/- pDCs. Therefore, the higher expression and induction of IRF5 in Traf5-/- pDCs causes proinflammatory and skin-tropic characteristics of the pDCs, which may accelerate skin wound healing responses. Collectively, our results uncover a novel role of TRAF5 in skin wound healing that is mediated by IRF5-dependent function of pDCs.


Assuntos
Células Dendríticas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR3/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Regulação para Cima/fisiologia , Cicatrização/fisiologia
13.
J Epidemiol ; 31(1): 65-76, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932529

RESUMO

BACKGROUND: We established a community-based cohort study to assess the long-term impact of the Great East Japan Earthquake on disaster victims and gene-environment interactions on the incidence of major diseases, such as cancer and cardiovascular diseases. METHODS: We asked participants to join our cohort in the health check-up settings and assessment center based settings. Inclusion criteria were aged 20 years or over and living in Miyagi or Iwate Prefecture. We obtained information on lifestyle, effect of disaster, blood, and urine information (Type 1 survey), and some detailed measurements (Type 2 survey), such as carotid echography and calcaneal ultrasound bone mineral density. All participants agreed to measure genome information and to distribute their information widely. RESULTS: As a result, 87,865 gave their informed consent to join our study. Participation rate at health check-up site was about 70%. The participants in the Type 1 survey were more likely to have psychological distress than those in the Type 2 survey, and women were more likely to have psychological distress than men. Additionally, coastal residents were more likely to have higher degrees of psychological distress than inland residents, regardless of sex. CONCLUSION: This cohort comprised a large sample size and it contains information on the natural disaster, genome information, and metabolome information. This cohort also had several detailed measurements. Using this cohort enabled us to clarify the long-term effect of the disaster and also to establish personalized prevention based on genome, metabolome, and other omics information.


Assuntos
Terremotos/estatística & dados numéricos , Interação Gene-Ambiente , Angústia Psicológica , Adulto , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Pesquisa Participativa Baseada na Comunidade , Desastres , Feminino , Genoma , Humanos , Incidência , Japão/epidemiologia , Estilo de Vida , Masculino , Metaboloma , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Inquéritos e Questionários , Adulto Jovem
14.
Biochem Biophys Res Commun ; 521(2): 353-359, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668809

RESUMO

The conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) originate from the same common dendritic cell precursor cells in the bone marrow. The pDCs produce large amounts of type 1 interferon in response to foreign nucleic acid and crucially contribute to host defense against viral infection. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) is a pivotal component of various TNF receptor signaling pathways in the immune system. Although the functions of TRAF5 in T and B lymphocytes have been well studied, its roles in pDCs remains to be fully elucidated. In this study, we show that the expression of TRAF5 supports the generation of pDCs in the bone marrow and also critically contributes to the homeostasis of the pDC subset in the periphery in a cell-intrinsic manner. Furthermore, we provide evidence that TRAF5 promotes the commitment of DC precursor cells toward pDC versus cDC subsets, which is regulated by the balance of transcription factors TCF4 and ID2. Together our findings reveal that TRAF5 acts as a positive regulator of pDC differentiation from bone marrow progenitors.


Assuntos
Células da Medula Óssea/citologia , Células Dendríticas/citologia , Células-Tronco/citologia , Fator 5 Associado a Receptor de TNF/fisiologia , Animais , Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Proteína 2 Inibidora de Diferenciação/fisiologia , Fator de Transcrição 4/fisiologia , Fatores de Transcrição/fisiologia
15.
J Immunol ; 201(8): 2264-2272, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209188

RESUMO

Bmi1 is a polycomb group protein and regulator that stabilizes the ubiquitination complex PRC1 in the nucleus with no evidently direct link to the NF-κB pathway. In this study, we report a novel function of Bmi1: its regulation of IκBα ubiquitination in the cytoplasm. A deficiency of Bmi1 inhibited NF-κB-mediated gene expression in vitro and a NF-κB-mediated mouse model of arthritis in vivo. Mechanistic analysis showed that Bmi1 associated with the SCF ubiquitination complex via its N terminus and with phosphorylation by an IKKα/ß-dependent pathway, leading to the ubiquitination of IκBα. These effects on NF-κB-related inflammation suggest Bmi1 in the SCF complex is a potential therapeutic target for various diseases and disorders, including autoimmune diseases.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Citoplasma/metabolismo , Células Endoteliais/fisiologia , Complexos Multiproteicos/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , NF-kappa B/metabolismo , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Proteínas Ligases SKP Culina F-Box/genética , Ativação Transcricional , Ubiquitinação
16.
Int Immunol ; 30(7): 291-299, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29668931

RESUMO

Tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 constitutively bind to glycoprotein 130 kDa (gp130) and inhibit IL-6-driven activation of signal transducer and activator of transcription 3 (STAT3) in CD4+ T cells, which limits the differentiation of pro-inflammatory IL-17-producing helper T cells that require IL-6-receptor (IL-6R) signals for their development. However, it is not known how the interaction between TRAF and gp130 negatively regulates STAT3 activity in the IL-6R complex. We hypothesized that TRAF proteins associated with gp130 might limit the activation of Janus kinase that is needed for the activation of STAT3. To test this, we transfected HEK293T cells to express gp130 and TRAF2 or TRAF5 together with two chimeric JAK1 proteins combined with either the N-terminal or the C-terminal protein fragment of firefly luciferase. Using this luciferase fragment complementation system, we found that the recovery of luciferase enzyme activity was coincident with proximal JAK1-JAK1 interaction and phosphorylation of JAK1 in the IL-6R complex and that the expression of TRAF protein significantly inhibited the recovery of luciferase activity. The binding of TRAF to gp130 via the C-terminal TRAF domain was essential for the inhibition. In accordance with this, upon stimulation of endogenous gp130 with a complex of IL-6 and IL-6R, Traf5-/- CD4+ T cells displayed significantly higher amounts of phosphorylated JAK1 than did their wild-type counterparts. Therefore, our results demonstrate that gp130-associated TRAF2 and TRAF5 inhibit the interaction between two JAK proteins in the IL-6R complex that is essential for initiating the JAK-STAT signaling pathway.


Assuntos
Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Receptor gp130 de Citocina/imunologia , Interleucina-6/imunologia , Janus Quinase 1/imunologia , Camundongos , Fosforilação , Ligação Proteica , Fator 2 Associado a Receptor de TNF/imunologia , Fator 5 Associado a Receptor de TNF/imunologia
17.
Adv Exp Med Biol ; 1189: 53-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31758531

RESUMO

Costimulatory signals initiated by the interaction between the tumor necrosis factor (TNF) ligand and cognate TNF receptor (TNFR) superfamilies promote clonal expansion, differentiation, and survival of antigen-primed CD4+ and CD8+ T cells and have a pivotal role in T-cell-mediated adaptive immunity and diseases. Accumulating evidence in recent years indicates that costimulatory signals via the subset of the TNFR superfamily molecules, OX40 (TNFRSF4), 4-1BB (TNFRSF9), CD27, DR3 (TNFRSF25), CD30 (TNFRSF8), GITR (TNFRSF18), TNFR2 (TNFRSF1B), and HVEM (TNFRSF14), which are constitutive or inducible on T cells, play important roles in protective immunity, inflammatory and autoimmune diseases, and tumor immunotherapy. In this chapter, we will summarize the findings of recent studies on these TNFR family of co-signaling molecules regarding their function at various stages of the T-cell response in the context of infection, inflammation, and cancer. We will also discuss how these TNFR co-signals are critical for immune regulation and have therapeutic potential for the treatment of T-cell-mediated diseases.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Imunoterapia , Ativação Linfocitária , Neoplasias
18.
J Biol Chem ; 292(44): 18098-18112, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916727

RESUMO

Pulmonary alveolar proteinosis (PAP) is a severe respiratory disease characterized by dyspnea caused by accumulation of surfactant protein. Dysfunction of alveolar macrophages (AMs), which regulate the homeostasis of surfactant protein, leads to the development of PAP; for example, in mice lacking BTB and CNC homology 2 (Bach2). However, how Bach2 helps prevent PAP is unknown, and the cell-specific effects of Bach2 are undefined. Using mice lacking Bach2 in specific cell types, we found that the PAP phenotype of Bach2-deficient mice is due to Bach2 deficiency in more than two types of immune cells. Depletion of hyperactivated T cells in Bach2-deficient mice restored normal function of AMs and ameliorated PAP. We also found that, in Bach2-deficient mice, hyperactivated T cells induced gene expression patterns that are specific to other tissue-resident macrophages and dendritic cells. Moreover, Bach2-deficient AMs exhibited a reduction in cell cycle progression. IFN-γ released from T cells induced Bach2 expression in AMs, in which Bach2 then bound to regulatory regions of inflammation-associated genes in myeloid cells. Of note, in AMs, Bach2 restricted aberrant responses to excessive T cell-induced inflammation, whereas, in T cells, Bach2 puts a brake on T cell activation. Moreover, Bach2 stimulated the expression of multiple histone genes in AMs, suggesting a role of Bach2 in proper histone expression. We conclude that Bach2 is critical for the maintenance of AM identity and self-renewal in inflammatory environments. Treatments targeting T cells may offer new therapeutic strategies for managing secondary PAP.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Proteinose Alveolar Pulmonar/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biomarcadores/metabolismo , Linhagem da Célula , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Perfilação da Expressão Gênica , Heterozigoto , Pulmão/metabolismo , Pulmão/patologia , Ativação Linfocitária , Depleção Linfocítica , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
19.
Eur J Immunol ; 47(2): 305-313, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861804

RESUMO

Dendritic cells (DCs) in lymphoid and non-lymphoid tissues are professional antigen-presenting cells that are essential for effective immunity and tolerance. However, the presence and characteristics of DCs in steady-state salivary glands (SGs) currently remain unknown. We herein identified CD64- CD11c+ classical DCs (cDCs) as well as CD64+ macrophages among CD45+ MHC class II+ antigen-presenting cells in steady-state murine SGs. SG cDCs were divided into CD103+ CD11b- and CD103- CD11b+ cDCs. CD103+ CD11b- cDCs expressed XCR1, CLEC9A, and interferon regulatory factor 8, whereas CD103- CD11b+ cDCs strongly expressed CD172a. Both cDC subsets in SGs markedly expanded in response to the Flt3 ligand (Flt3L), were replenished by bone marrow-derived precursors, and differentiated from common DC precursors, but not monocytes. Furthermore, ovalbumin-pulsed SG CD103+ CD11b- cDCs induced the proliferation of naïve ovalbumin-specific CD8+ T cells and production of interferon-γ from proliferating T cells. SG CD103+ CD11b- cDCs expanded by Flt3L in vivo exhibited the same properties. These results indicate that bona fide cDCs reside in steady-state murine SGs and cDCs with the CD103+ CD11b- phenotype possess antigen cross-presenting capacity. Moreover, Flt3L enhances protective immunity by expanding cDCs. Taken together, SG cDCs might play an important role in maintaining immune homeostasis in the tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Glândulas Salivares/citologia , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Apresentação Cruzada , Feminino , Cadeias alfa de Integrinas/metabolismo , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgG/metabolismo , Tirosina Quinase 3 Semelhante a fms/imunologia
20.
Biochem Biophys Res Commun ; 499(3): 544-550, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29596835

RESUMO

Oncostatin M (OSM) is involved in pathogenesis of several human inflammatory diseases including lung inflammation and fibrosis. Although accumulating evidence indicates that OSM mediates lung inflammation, the precise mechanism for OSM on lung inflammation still remains unclear. In this study, we found that OSM receptor was abundantly expressed on endothelial and stromal/fibroblast cells in the lung of mice. In vitro stimulation with OSM upregulated vascular cell adhesion molecule-1 (VCAM-1), which promotes eosinophil infiltration in the lung tissues, on freshly-isolated lung stromal/fibroblast cells from wild-type mice. However, these cells from TNF receptor associated factor 5 (TRAF5)-deficient mice failed to show the increase in VCAM-1 expression after OSM stimulation. Furthermore, Traf5-/- mice showed markedly attenuated lung inflammation in terms of eosinophil infiltration upon intranasal administration with OSM as compared to wild-type mice. These results indicate that TRAF5 is crucially involved in OSM-mediated lung inflammation probably by inducing lung stromal/fibroblast cell activation.


Assuntos
Oncostatina M/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA