Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38889935

RESUMO

The basidiomycetous yeast Pseudozyma tsukubaensis is known as an industrial mannosylerythritol lipid producer. In this study, the PtURA5 marker gene was deleted by homologous recombination. Using the PtURA5-deleted mutant as a host strain, we obtained a derivative disrupted for the PtKU70 gene, a putative ortholog of the KU70 gene encoding a protein involved in the non-homologous end-joining pathway of DNA repair. Subsequently, the introduced PtURA5 gene was re-deleted by marker recycling. These results demonstrated that the PtURA5 gene can be used as a recyclable marker gene. Although the frequency of homologous recombination has been shown to be increased by KU70 disruption in other fungi, the PtKU70-disrupted strain of P. tsukubaensis did not demonstrate an elevated frequency of homologous recombination. Furthermore, the PtKU70-disrupted strain did not show increased susceptibility to bleomycin. These results suggested that the function of this KU70 ortholog in P. tsukubaensis is distinct from that in other fungi.

2.
Appl Microbiol Biotechnol ; 107(4): 1269-1284, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648525

RESUMO

The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway-related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts. KEY POINTS: LsSpt23p was identified as a positive regulator of TAG biosynthesis LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production LsSPT23M1108T overexpression mutant showed fivefold higher TAG production than control.


Assuntos
Lipogênese , Leveduras , Lipogênese/genética , Triglicerídeos , Citratos , Nitrogênio
3.
Ann Hum Biol ; 50(1): 390-398, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812249

RESUMO

BACKGROUND: The Teotihuacan civilisation was the largest one in ancient Mesoamerica. The Teotihuacan city was born in the north-eastern Basin of Mexico around the second century BC, reached its peak in the fourth century AD, and had cultural influence throughout Mesoamerica. At its peak, the size of the city reached more than 20 km2, and the total population is estimated to have increased from 100,000 to 200,000. However, knowledge of the genetic background of the Teotihuacan people is still limited. AIM: We aimed to determine the mitogenome sequences of the Teotihuacan human remains and compare the ancient and present Mesoamericans. In addition, we aimed to identify the food habits of ancient Teotihuacans. SUBJECTS AND METHODS: We determined the mitogenome sequences of human remains dated to 250-636 cal AD using target enrichment-coupled next generation sequencing. We also performed stable isotope analysis. RESULTS: We successfully obtained nearly full-length sequences newly unearthed from a civilian dwelling in the Teotihuacan site. Teotihuacan mitochondrial DNA was classified into the haplogroups in present and ancient Mesoamericans. In addition, Teotihuacan individuals had a diet dependent on C4 plants such as maize. CONCLUSION: Genetic diversity varied among the Teotihuacans.


Assuntos
Genoma Mitocondrial , Humanos , Restos Mortais , Isótopos , Dieta , DNA Mitocondrial/genética
4.
Curr Issues Mol Biol ; 44(2): 498-504, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723320

RESUMO

Homopolymeric tracts (HPTs) can lead to phase variation and DNA replication slippage, driving adaptation to environmental changes and evolution of genes and genomes. However, there is limited information on HPTs in Escherichia; therefore, we conducted a comprehensive cross-strain search for HPTs in Escherichia genomes. We determined the HPT genomic distribution and identified a pattern of high-frequency HPT localization in pathogenic Escherichia lineages. Notably, HPTs localized near transcriptional regulatory genes. Additionally, excessive repeats accumulated in toxin-coding genes. Moreover, the genomic localization of some HPTs might be derived from exogenous DNA, such as that of bacteriophages. Altogether, our findings may prove useful for understanding the role of HPTs in Escherichia genomes.

5.
Appl Microbiol Biotechnol ; 106(24): 8093-8110, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36399168

RESUMO

Burkholderia stabilis strain FERMP-21014 secretes cholesterol esterase (BsChe), which is used in clinical settings to determine serum cholesterol levels. Previously, we constructed an expression plasmid with an endogenous constitutive promoter to enable the production of recombinant BsChe. In this study, we obtained one mutant strain with 13.1-fold higher BsChe activity than the wild type, using N-methyl-N'-nitro-N-nitrosoguanidine as a mutagen. DNA-sequencing analysis revealed that the strain had lost chromosome 3 (∆Chr3), suggesting that the genes hindering BsChe production may be encoded on Chr3. We also identified common mutations in the functionally unknown BSFP_068720/30 genes in the top 10 active strains generated during transposon mutagenesis. As BSFP_068720/30/40 comprised an operon on Chr3, we created the BSFP_068720/30/40 disruption mutant and confirmed that each disruption mutant containing the expression plasmid exhibited ~ 16.1-fold higher BsChe activity than the wild type. Quantitative PCR showed that each disruption mutant and ΔChr3 had a ~ 9.4-fold higher plasmid copy number than the wild type. Structural prediction models indicate that BSFP_068730/40 is structurally homologous to the structural maintenance of chromosomes (SMC) protein MukBE, which is responsible for chromosome segregation during cell division. Conversely, BSFP_068720/30/40 disruption did not lead to a Chr3 drop-out. These results imply that BSFP_068720/30/40 is not a SMC protein but is involved in destabilizing foreign plasmids to prevent the influx of genetic information from the environment. In conclusion, the disruption of BSFP_068720/30/40 improved plasmid stability and copy number, resulting in exceptionally high BsChe production. KEY POINTS: • Disruption of BSFP_068720/30/40 enabled mass production of Burkholderia Che/Lip. • BSFP_068730/40 is an SMC protein homolog not involved in chromosome retention. • BSFP_068720/30/40 is likely responsible for the exclusion of exogenous plasmids.


Assuntos
Internacionalidade , Esterol Esterase , Cromossomos
6.
Phys Biol ; 19(1)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788744

RESUMO

Microbiomes in their natural environments vary dynamically with changing environmental conditions. The detection of these dynamic changes in microbial populations is critical for understanding the impact of environmental changes on the microbial community. Here, we propose a novel method to detect time-series changes in the microbiome, based on multivariate statistical process control. By focusing on the interspecies structures, this approach enables the robust detection of time-series changes in a microbiome composed of a large number of microbial species. Applying this approach to empirical human gut microbiome data, we accurately traced time-series changes in microbiota composition induced by a dietary intervention trial. This method was also excellent for tracking the recovery process after the intervention. Our approach can be useful for monitoring dynamic changes in complex microbial communities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias , Humanos , Dinâmica Populacional
7.
Sci Rep ; 12(1): 5609, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379875

RESUMO

The outer membrane of Gram-negative bacteria functions as an impermeable barrier to foreign compounds. Thus, modulating membrane transport can contribute to improving susceptibility to antibiotics and efficiency of bioproduction reactions. In this study, the cellular uptake of hydrophobic and large-scaffold antibiotics and other compounds in Gram-negative bacteria was investigated by modulating the homolog expression of bamB encoding an outer membrane lipoprotein and tolC encoding an outer membrane efflux protein via gene deletion and gene silencing. The potential of deletion mutants for biotechnological applications, such as drug screening and bioproduction, was also demonstrated. Instead of being subjected to gene deletion, wild-type bacterial cells were treated with cell-penetrating peptide conjugates of a peptide nucleic acid (CPP-PNA) against bamB and tolC homologs as antisense agents. Results revealed that the single deletion of bamB and tolC in Escherichia coli increased the uptake of large- and small-scaffold hydrophobic compounds, respectively. A bamB-and-tolC double deletion mutant had a higher uptake efficiency for certain antibiotics and other compounds with high hydrophobicity than each single deletion mutant. The CPP-PNA treated E. coli and Pseudomonas aeruginosa cells showed high sensitivity to various antibiotics. Therefore, these gene deletion and silencing approaches can be utilized in therapeutic and biotechnological fields.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
8.
Front Microbiol ; 12: 798010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185823

RESUMO

We determined the whole genome sequences of three bacterial strains, designated as FNDCR1, FNDCF1, and FNDCR2, isolated from a practical nata-de-coco producing bacterial culture. Only FNDCR1 and FNDCR2 strains had the ability to produce cellulose. The 16S rDNA sequence and phylogenetic analysis revealed that all strains belonged to the Komagataeibacter genus but belonged to a different clade within the genus. Comparative genomic analysis revealed cross-strain distribution of duplicated sequences in Komagataeibacter genomes. It is particularly interesting that FNDCR1 has many duplicated sequences within the genome independently of the phylogenetic clade, suggesting that these duplications might have been obtained specifically for this strain. Analysis of the cellulose biosynthesis operon of the three determined strain genomes indicated that several cellulose synthesis-related genes, which are present in FNDCR1 and FNDCR2, were lost in the FNDCF1 strain. These findings reveal important genetic insights into practical nata de coco-producing bacteria that can be used in food development. Furthermore, our results also shed light on the variation in their cellulose-producing abilities and illustrate why genetic traits are unstable for Komagataeibacter and Komagataeibacter-related acetic acid bacteria.

9.
Microorganisms ; 9(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442772

RESUMO

The oleaginous yeast Lipomyces starkeyi is an excellent producer of triacylglycerol (TAG) as a feedstock for biodiesel production. To understand the regulation of TAG synthesis, we attempted to isolate mutants with decreased lipid productivity and analyze the expression of TAG synthesis-related genes in this study. A mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation. The expression of citrate-mediated acyl-CoA synthesis-related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain. Together with a notion that L. starkeyi mutants with increased lipid productivities had increased gene expression, there was a correlation between the expression of these genes and TAG synthesis. To clarify the importance of citrate-mediated acyl-CoA synthesis pathway on TAG synthesis, we also constructed a strain with no ATP-citrate lyase responsible for the first reaction of citrate-mediated acyl-CoA synthesis and investigated the importance of ATP-citrate lyase on TAG synthesis. The ATP-citrate lyase was required for the promotion of cell growth and TAG synthesis in a glucose medium. This study may provide opportunities for the development of an efficient TAG synthesis for biodiesel production.

10.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582014

RESUMO

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Assuntos
Lipídeos/biossíntese , Lipomyces , Raios Ultravioleta , Biocombustíveis , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Lipídeos/efeitos da radiação , Lipomyces/genética , Lipomyces/isolamento & purificação , Lipomyces/metabolismo , Lipomyces/efeitos da radiação , Engenharia Metabólica , Organismos Geneticamente Modificados , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/efeitos da radiação , Triglicerídeos/metabolismo , Leveduras/genética , Leveduras/metabolismo , Leveduras/efeitos da radiação
11.
Genes (Basel) ; 11(7)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664326

RESUMO

A genome wide association study reported that the T allele of rs2294008 in a cancer-related gene, PSCA, is a risk allele for diffuse-type gastric cancer. This allele has the highest frequency (0.63) in Japanese in Tokyo (JPT) among 26 populations in the 1000 Genomes Project database. FST ≈ 0.26 at this single nucleotide polymorphism is one of the highest between JPT and the genetically close Han Chinese in Beijing (CHB). To understand the evolutionary history of the alleles in PSCA, we addressed: (i) whether the C non-risk allele at rs2294008 is under positive selection, and (ii) why the mainland Japanese population has a higher T allele frequency than other populations. We found that haplotypes harboring the C allele are composed of two subhaplotypes. We detected that positive selection on both subhaplotypes has occurred in the East Asian lineage. However, the selection on one of the subhaplotypes in JPT seems to have been relaxed or ceased after divergence from the continental population; this may have caused the elevation of T allele frequency. Based on simulations under the dual structure model (a specific demography for the Japanese) and phylogenetic analysis with ancient DNA, the T allele at rs2294008 might have had high frequency in the Jomon people (one of the ancestral populations of the modern Japanese); this may explain the high T allele frequency in the extant Japanese.


Assuntos
Antígenos de Neoplasias/genética , Evolução Molecular , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , População/genética , Neoplasias Gástricas/genética , Proteínas Ligadas por GPI/genética , Frequência do Gene , Humanos , Japão , Seleção Genética
12.
Bioengineering (Basel) ; 7(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227954

RESUMO

Improving the bioproduction ability of efficient host microorganisms is a central aim in bioengineering. To control biosynthesis in living cells, the regulatory system of the whole biosynthetic pathway should be clearly understood. In this study, we applied our network modeling method to infer the regulatory system for triacylglyceride (TAG) biosynthesis in Lipomyces starkeyi, using factor analyses and structural equation modeling to construct a regulatory network model. By factor analysis, we classified 89 TAG biosynthesis-related genes into nine groups, which were considered different regulatory sub-systems. We constructed two different types of regulatory models. One is the regulatory model for oil productivity, and the other is the whole regulatory model for TAG biosynthesis. From the inferred oil productivity regulatory model, the well characterized genes DGA1 and ACL1 were detected as regulatory factors. Furthermore, we also found unknown feedback controls in oil productivity regulation. These regulation models suggest that the regulatory factor induction targets should be selected carefully. Within the whole regulatory model of TAG biosynthesis, some genes were detected as not related to TAG biosynthesis regulation. Using network modeling, we reveal that the regulatory system is helpful for the new era of bioengineering.

13.
Sci Rep ; 10(1): 21651, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303940

RESUMO

William Adams (Miura Anjin) was an English navigator who sailed with a Dutch trading fleet to the far East and landed in Japan in 1600. He became a vassal under the Shogun, Tokugawa Ieyasu, was bestowed with a title, lands and swords, and became the first SAMURAI from England. "Miura" comes from the name of the territory given to him and "Anjin" means "pilot". He lived out the rest of his life in Japan and died in Hirado, Nagasaki Prefecture, in 1620, where he was reportedly laid to rest. Shortly after his death, graveyards designated for foreigners were destroyed during a period of Christian repression, but Miura Anjin's bones were supposedly taken, protected, and reburied. Archaeological investigations in 1931 uncovered human skeletal remains and it was proposed that they were those of Miura Anjin. However, this could not be confirmed from the evidence at the time and the remains were reburied. In 2017, excavations found skeletal remains matching the description of those reinterred in 1931. We analyzed these remains from various aspects, including genetic background, dietary habits, and burial style, utilizing modern scientific techniques to investigate whether they do indeed belong to the first English SAMURAI.

14.
Bioinform Biol Insights ; 13: 1177932219873884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523131

RESUMO

The incompleteness of partial human mitochondrial genome sequences makes it difficult to perform relevant comparisons among multiple resources. To deal with this issue, we propose a computational framework for deducing missing nucleotides in the human mitochondrial genome. We applied it to worldwide mitochondrial haplogroup lineages and assessed its performance. Our approach can deduce the missing nucleotides with a precision of 0.99 or higher in most human mitochondrial DNA lineages. Furthermore, although low-coverage mitochondrial genome sequences often lead to a blurred relationship in the multidimensional scaling analysis, our approach can correct this positional arrangement according to the corresponding mitochondrial DNA lineages. Therefore, our framework will provide a practical solution to compensate for the lack of genome coverage in partial and fragmented human mitochondrial genome sequences. In this study, we developed an open-source computer program, MitoIMP, implementing our imputation procedure. MitoIMP is freely available from https://github.com/omics-tools/mitoimp.

15.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948473

RESUMO

Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli It is used as one of the hosts for protein expression and bioconversion. Here, we report the draft genome sequence of R. erythropolis JCM 3201.

16.
PeerJ ; 5: e3406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584729

RESUMO

Recent rapid advances in high-throughput, next-generation sequencing (NGS) technologies have promoted mitochondrial genome studies in the fields of human evolution, medical genetics, and forensic casework. However, scientists unfamiliar with computer programming often find it difficult to handle the massive volumes of data that are generated by NGS. To address this limitation, we developed MitoSuite, a user-friendly graphical tool for analysis of data from high-throughput sequencing of the human mitochondrial genome. MitoSuite generates a visual report on NGS data with simple mouse operations. Moreover, it analyzes high-coverage sequencing data but runs on a stand-alone computer, without the need for file upload. Therefore, MitoSuite offers outstanding usability for handling massive NGS data, and is ideal for evolutionary, clinical, and forensic studies on the human mitochondrial genome variations. It is freely available for download from the website https://mitosuite.com.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA