RESUMO
The COVID-19 pandemic impacted collaborative activities, travel, and physical contact, increasing the demand for real-time interactions with remote environments. However, the existing remote communication solutions provide limited interactions and do not convey a high sense of presence within a remote environment. Therefore, we propose a snake-shaped wearable telexistence robot, called Piton, that can be remotely used for a variety of collaborative applications. To the best of our knowledge, Piton is the first snake-shaped wearable telexistence robot. We explain the implementation of Piton, its control architecture, and discuss how Piton can be deployed in a variety of contexts. We implemented three control methods to control Piton: HM-using a head-mounted display (HMD), HH-using an HMD and hand-held tracker, and FM-using an HMD and a foot-mounted tracker. We conducted a user study to investigate the applicability of the proposed control methods for telexistence, focusing on body ownership (Alpha IVBO), mental and physical load (NASA-TLX), motion sickness (VRSQ), and a questionnaire to measure user impressions. The results show that both the HM and HH provide relevantly high levels of body ownership, had high perceived accuracy, and were highly favored, whereas the FM control method yielded the lowest body ownership effect and was least favored. We discuss the results and highlight the advantages and shortcomings of the control methods with respect to various potential application contexts. Based on our design and evaluation of Piton, we extracted a number of insights and future research directions to deepen our investigation and realization of wearable telexistence robots.
Assuntos
COVID-19 , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , PandemiasRESUMO
Mixed reality (MR) technologies have a high potential to enhance obstacle negotiation training beyond the capabilities of existing physical systems. Despite such potential, the feasibility of using MR for obstacle negotiation on typical training treadmill systems and its effects on obstacle negotiation performance remains largely unknown. This research bridges this gap by developing an MR obstacle negotiation training system deployed on a treadmill, and implementing two MR systems with a video see-through (VST) and an optical see-through (OST) Head Mounted Displays (HMDs). We investigated the obstacle negotiation performance with virtual and real obstacles. The main outcomes show that the VST MR system significantly changed the parameters of the leading foot in cases of Box obstacle (approximately 22 cm to 30 cm for stepping over 7cm-box), which we believe was mainly attributed to the latency difference between the HMDs. In the condition of OST MR HMD, users tended to not lift their trailing foot for virtual obstacles (approximately 30 cm to 25 cm for stepping over 7cm-box). Our findings indicate that the low-latency visual contact with the world and the user's body is a critical factor for visuo-motor integration to elicit obstacle negotiation.