Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761999

RESUMO

Insulin is a crucial signalling molecule that primarily functions to reduce blood glucose levels through cellular uptake of glucose. In addition to its role in glucose homeostasis, insulin has been shown to regulate cell proliferation. Specifically, insulin enhances the phosphorylation of pyruvate dehydrogenase E1α (PDHA1) at the Ser293 residue and promotes the proliferation of HepG2 hepatocellular carcinoma cells. Furthermore, we previously observed that p-Ser293 PDHA1 bound with pyruvate kinase M2 (PKM2) as confirmed by coimmunoprecipitation. In this study, we used an in silico analysis to predict the structural conformation of the two binding proteins. However, the function of the protein complex remained unclear. To investigate further, we treated cells with si-PDHA1 and si-PKM2, which led to a reduction in PKM2 and p-Ser293 PDHA1 levels, respectively. Additionally, we found that the PDHA S293A dephospho-mimic reduced PKM2 levels and its associated enzyme activity. Treatment with MG132 and leupeptin impeded the PDHA1 S293A-mediated PKM2 reduction. These results suggest that the association between p-PDHA1 and PKM2 promotes their stability and protects them from protein degradation. Of interest, we observed that p-PDHA1 and PKM2 were localized in the nucleus in liver cancer patients. Under insulin stimulation, the knockdown of both PDHA1 and PKM2 led to a reduction in the expression of common genes, including KDMB1. These findings suggest that p-PDHA1 and PKM2 play a regulatory role in these proteins' expression and induce tumorigenesis in response to insulin.

2.
J Cell Physiol ; 237(1): 128-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311499

RESUMO

Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.


Assuntos
Leucemia Mieloide Aguda , Piruvato Quinase , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Glicólise/fisiologia , Humanos , Lactatos , Proteínas Quinases/metabolismo , Piruvato Quinase/genética
3.
FASEB J ; 33(2): 2072-2083, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226812

RESUMO

Insulin is a critical signaling molecule in reducing blood glucose levels, and pyruvate dehydrogenase (PDH) is an essential enzyme in regulating glucose metabolism. However, the insulin effect on PDH function has not been well established. We observed that insulin attenuated the phosphorylation (p) of Ser264 (p-Ser264) in the PDH E1α subunit (PDHA1) in normal rat hepatocyte. In contrast, insulin induced an increase of p-Ser264 PDHA1 levels in hepatocellular carcinoma HepG2 and Huh7 cells. Insulin activated RhoA and Rho-dependent coiled coil kinase, an effector protein of active RhoA, which regulated p-Ser264 PDHA1 levels, along with both p-Ser9 and p-Tyr216 forms of glycogen synthase kinase-3ß (GSK-3ß) in HepG2 cells. Only p-Tyr216 GSK-3ß, the active form was involved in an increase of p-Ser264 PDHA1. Akt was also engaged in p-Ser9 of GSK-3ß, but neither in p-Tyr216 of GSK-3ß nor p-Ser264 of PDHA1 upon insulin. Reconstituted dephospho-mimic forms PDHA1 S264A and GSK-3ß Y216F impaired, but wild-types PDHA1 and GSK-3ß and phospho-mimic forms PDHA1 S264D and GSK-3ß Y216E increased cell proliferation upon insulin through expression of c-Myc and cyclin D1. Therefore, we propose that insulin-mediated p-PDHA1 is involved in the regulation of HepG2 cell proliferation through RhoA signaling pathway.-Islam, R., Kim, J.-G., Park, Y., Cho, J.-Y., Cap, K.-C., Kho, A.-R., Chung, W.-S., Suh, S.-W., Park, J.-B. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Ratos , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética
4.
J Cell Physiol ; 233(9): 6381-6392, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29377108

RESUMO

RhoA GTPase plays a variety of functions in regulation of cytoskeletal proteins, cellular morphology, and migration along with various proliferation and transcriptional activity in cells. RhoA activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and the guanine nucleotide dissociation factor (GDI). The RhoA-RhoGDI complex exists in the cytosol and the active GTP-bound form of RhoA is located to the membrane. GDI displacement factors (GDFs) including IκB kinase γ (IKKγ) dissociate the RhoA-GDI complex, allowing activation of RhoA through GEFs. In addition, modifications of Tyr42 phosphorylation and Cys16/20 oxidation in RhoA and Tyr156 phosphorylation and oxidation of RhoGDI promote the dissociation of the RhoA-RhoGDI complex. The expression of RhoA is regulated through transcriptional factors such as c-Myc, HIF-1α/2α, Stat 6, and NF-κB along with several reported microRNAs. As the role of RhoA in regulating actin-filament formation and myosin-actin interaction has been well described, in this review we focus on the transcriptional activity of RhoA and also the regulation of RhoA message itself. Of interest, in the cytosol, activated RhoA induces transcriptional changes through filamentous actin (F-actin)-dependent ("actin switch") or-independent means. RhoA regulates the activity of several transcription regulators such as serum response factor (SRF)/MAL, AP-1, NF-κB, YAP/TAZ, ß-catenin, and hypoxia inducible factor (HIF)-1α. Interestingly, RhoA also itself is localized to the nucleus by an as-yet-undiscovered mechanism.


Assuntos
Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Citosol/metabolismo , Humanos , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia
5.
Biomolecules ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275747

RESUMO

Cell migration is a crucial contributor to metastasis, a critical process associated with the mortality of cancer patients. The initiation of metastasis is triggered by epithelial-mesenchymal transition (EMT), along with the changes in the expression of EMT marker proteins. Inflammation plays a significant role in carcinogenesis and metastasis. Lipopolysaccharide (LPS), a typical inflammatory agent, promoted the generation of superoxide through the activation of p-Tyr42 RhoA, Rho-dependent kinase 2 (ROCK2), and the phosphorylation of p47phox. In addition, p-Tyr42 RhoA activated phospholipase D1 (PLD1), with PLD1 and phosphatidic acid (PA) being involved in superoxide production. PA also regulated the expression of EMT proteins. Consequently, we have identified MHY9 (Myosin IIA, NMIIA) as a PA-binding protein in response to LPS. MYH9 also contributed to cell migration and the alteration in the expression of EMT marker proteins. Co-immunoprecipitation revealed the formation of a complex involving p-Tyr42 RhoA, PLD1, and MYH9. These proteins were found to be distributed in both the cytosol and nucleus. In addition, we have found that p-Tyr42 RhoA PLD1 and MYH9 associate with the ZEB1 promoter. The suppression of ZEB1 mRNA levels was achieved through the knockdown of RhoA, PLD1, and MYH9 using si-RNAs. Taken together, we propose that p-Tyr42 RhoA and PLD1, responsible for producing PA, and PA-bound MYH9 are involved in the regulation of ZEB1 expression, thereby promoting cell migration.


Assuntos
Lipopolissacarídeos , Fosfolipase D , Transdução de Sinais , Humanos , Movimento Celular , Lipopolissacarídeos/farmacologia , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Superóxidos
6.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740278

RESUMO

Insulin potently promotes cell proliferation and anabolic metabolism along with a reduction in blood glucose levels. Pyruvate dehydrogenase (PDH) plays a pivotal role in glucose metabolism. Insulin increase PDH activity by attenuating phosphorylated Ser293 PDH E1α (p-PDHA1) in normal liver tissue. In contrast to normal hepatocytes, insulin enhanced p-PDHA1 level and induced proliferation of hepatocellular carcinoma HepG2 cells. Here, we attempted to find a novel function of p-PDHA1 in tumorigenesis upon insulin stimulation. We found that p-Ser293 E1α, but not the E2 or E3 subunit of pyruvate dehydrogenase complex (PDC), co-immunoprecipitated with pyruvate kinase M2 (PKM2) upon insulin. Of note, the p-PDHA1 along with PKM2 translocated to the nucleus. The p-PDHA1/PKM2 complex was associated with the promoter of long intergenic non-protein coding (LINC) 00273 gene (LINC00273) and recruited p300 histone acetyl transferase (HAT) and ATP citrate lyase (ACL), leading to histone acetylation. Consequently, the level of transcription factor ZEB1, an epithelial-mesenchymal transition (EMT) marker, was promoted through increased levels of LINC00273, resulting in cell migration upon insulin. p-PDHA1, along with PKM2, may be crucial for transcriptional regulation of specific genes through epigenetic regulation upon insulin in hepatocarcinoma cells.

7.
Front Cell Dev Biol ; 10: 761080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155422

RESUMO

The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.

8.
Cells ; 11(4)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203301

RESUMO

Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients' overall survival and quality of life.


Assuntos
Neoplasias Ovarianas , Qualidade de Vida , Biomarcadores , Carcinoma Epitelial do Ovário , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Tecnologia
9.
Chin Neurosurg J ; 7(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407946

RESUMO

BACKGROUND: Endoscopic third ventriculostomy (ETV) has been established as a viable treatment option for obstructive hydrocephalus of children over 6 weeks of age. ETV in pediatric groups may be unsuccessful due to the failure of absorption of cerebrospinal fluid (CSF) or reclosure of ventriculostomy stoma or due to infection. The exact cause is still debatable. Some issues like failure to eliminate the second membrane during the procedure or formation of the new arachnoid membrane at the stoma are still not clear. This study aims to assess the surgical failure of ETV and its predisposing factors. METHODS: Thirty-four pediatric patients with hydrocephalus were analyzed retrospectively. The patients' age limit was between 2.5 months and 14 years. This is a retrospective study of 34 patients in a single private hospital between June 2012 and January 2018. Patients having hydrocephalus in pediatric groups more than 6 weeks of age were included in the study. RESULTS: The mean age of all patients was 51.25 ± 53.90 months and the mean follow-up period was 50.47 ± 20.84 months. Of 34 surgeries, the success rate was 79% and the failure rate was 21%. Within 2 years, the success rate was 68.42% and above 2 years' success rate was 93.33%. In this series, 7 cases of ETV were re-explored and found ventriculostomy stoma closure in 3 cases, the presence of the second membrane in re-exploration 2 cases, and presence of inflammatory arachnoid membrane in re-exploration 2 cases. The use of dexamethasone around the stoma in inflammatory stoma was useful, having no recurrence. In one patient of the second membrane probably due to absorption failure in communicating hydrocephalus re-exploration was failed and was managed successfully with VP shunt. CONCLUSIONS: Predisposing factors causing ETV failure are ventriculostomy stoma closure by new arachnoid granulation tissues, remnants of the second membrane inside the stoma, CSF absorption failure, infection/high protein in CSF and inappropriate patient selection.

10.
Front Pharmacol ; 12: 639628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025409

RESUMO

Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.

11.
Antioxidants (Basel) ; 10(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379372

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a decline in cognitive function and neuronal damage. Although the precise pathobiology of AD remains elusive, accumulating evidence suggests that mitochondrial dysfunction is one of the underlying causes of AD. Mutations in mitochondrial or nuclear DNA that encode mitochondrial components may cause mitochondrial dysfunction. In particular, the dysfunction of electron transport chain complexes, along with the interactions of mitochondrial pathological proteins are associated with mitochondrial dysfunction in AD. Mitochondrial dysfunction causes an imbalance in the production of reactive oxygen species, leading to oxidative stress (OS) and vice versa. Neuroinflammation is another potential contributory factor that induces mitochondrial dysfunction. Phytochemicals or other natural compounds have the potential to scavenge oxygen free radicals and enhance cellular antioxidant defense systems, thereby protecting against OS-mediated cellular damage. Phytochemicals can also modulate other cellular processes, including autophagy and mitochondrial biogenesis. Therefore, pharmacological intervention via neuroprotective phytochemicals can be a potential strategy to combat mitochondrial dysfunction as well as AD. This review focuses on the role of phytochemicals in mitigating mitochondrial dysfunction in the pathogenesis of AD.

12.
Curr Pharm Des ; 26(7): 772-779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914904

RESUMO

BACKGROUND: Naturally-occurring products derived from living organisms have been shown to modulate various pharmacological and biological activities. Natural products protect against various diseases, which could be used for therapeutic assistance. Autophagy, a lysosome-mediated self-digestion pathway, has been implicated in a range of pathophysiological conditions and has recently gained attention for its role in several neurodegenerative diseases. METHODS: In this current review, we emphasized the recent progress made in our understanding of the molecular mechanism of autophagy in different cellular and mouse models using naturally-occurring autophagy modulators for the management of several neurodegenerative diseases. RESULTS: Accumulating evidence has revealed that a wide variety of natural compounds such as alkaloids, polyphenols, terpenoids, xanthonoids, flavonoids, lignans, disaccharides, glycolipoproteins, and saponins are involved in the modulation of the autophagy signaling pathway. These natural products have been used to treat various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, neuroblastoma, and glioblastoma. Although a number of synthetic autophagy regulators have been recognized as encouraging neurodegenerative therapeutic candidates, natural autophagy- regulating compounds have been of further interest as potential disease therapeutics, as they cause insignificant side effects. CONCLUSION: Existing in vitro and in vivo data are promising and highlight that naturally-occurring autophagyregulating compounds play an important role in the prevention and treatment of neurodegenerative disorders.


Assuntos
Autofagia , Produtos Biológicos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Humanos , Transdução de Sinais
13.
Biomedicines ; 8(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228222

RESUMO

Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.

14.
Small GTPases ; 11(2): 95-102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29199510

RESUMO

Rho GTPases play significant roles in cellular function and their activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), providing activation and inactivation of these GTPases, respectively. Active GTP-bound form of RhoA activates its effector proteins while the inactive GDP-bound form of RhoA exists in a RhoA-RhoGDI (guanine nucleotide dissociation inhibitor) complex in the cytosol. In particular, IκB kinase γ IKKγ/NF-κB essential modulator (NEMO) plays a role as a GDI displacement factor (GDF) for RhoA activation through binding to RhoA-RhoGDI complex. Meanwhile, prion protein inactivates RhoA despite RhoA/RhoGDI association. Novel target proteins for Rho-associated kinase (ROCK) such as glycogen synthase kinase (GSK)-3ß and IKKß are recently discovered. Here, we elaborate on a post-translationally modified version of RhoA, phosphorylated at Tyr42 and oxidized at Cys16/20. This form of RhoA dissociates from RhoA-RhoGDI complex and activates IKKß on IKKγ/NEMO, thus providing possibly a critical role for tumourigenesis.


Assuntos
Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Humanos
15.
Redox Biol ; 32: 101446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046944

RESUMO

Both the accumulation of Amyloid-ß (Aß) in plaques and phosphorylation of Tau protein (p-Tau) in neurofibrillary tangles have been identified as two major symptomatic features of Alzheimer's disease (AD). Despite of critical role of Aß and p-Tau in AD progress, the interconnection of signalling pathways that Aß induces p-Tau remains elusive. Herein, we observed that a popular AD model mouse (APP/PS1) and Aß-injected mouse showed an increase in p-Tyr42 Rho in hippocampus of brain. Low concentrations of Aß (1 µM) induced RhoA-mediated Ser422 phosphorylation of Tau protein (p-Ser422 Tau), but reduced the expression of ATP citrate lyase (ACL) in the HT22 hippocampal neuronal cell line. In contrast, high concentrations of Aß (10 µM) along with high levels of superoxide production remarkably attenuated accumulation of p-Ser422 Tau, but augmented ACL expression and activated sterol regulatory element-binding protein 1 (SREBP1), leading to cellular senescence. Notably, a high concentration of Aß (10 µM) induced nuclear localization of p-Tyr42 Rho, which positively regulated NAD kinase (NADK) expression by binding to the NADK promoter. Furthermore, severe AD patient brain showed high p-Tyr42 Rho levels. Collectively, our findings indicate that both high and low concentrations of Aß are detrimental to neurons via distinct two p-Tyr42 RhoA-mediated signalling pathways in Ser422 phosphorylation of Tau and ACL expression.


Assuntos
Doença de Alzheimer , Proteínas tau , ATP Citrato (pro-S)-Liase , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína rhoA de Ligação ao GTP/genética , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA