Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(5): 952-965, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794780

RESUMO

Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.


Assuntos
Impressão Genômica/genética , Impressão Genômica/fisiologia , Mamíferos/genética , Alelos , Animais , Evolução Biológica , Cromossomos , Metilação de DNA , Epigênese Genética/genética , Epigênese Genética/fisiologia , Mamíferos/metabolismo , Fenômenos Fisiológicos
2.
Nat Rev Genet ; 24(11): 783-796, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714957

RESUMO

Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.


Assuntos
Impressão Genômica , Poder Familiar , Animais , Humanos , Expressão Gênica , Mamíferos/genética
3.
PLoS Genet ; 19(10): e1010961, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856383

RESUMO

Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.


Assuntos
Galanina , Poder Familiar , Feminino , Animais , Camundongos , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Impressão Genômica/genética , Fenótipo , Antígenos de Neoplasias/genética , Proteínas/genética
4.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35531971

RESUMO

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Animais , Epigênese Genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Sinaptossomos/metabolismo , Transcriptoma/genética
5.
Hum Mol Genet ; 30(19): 1863-1880, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34100083

RESUMO

Abnormally elevated expression of the imprinted PHLDA2 gene has been reported in the placenta of human babies that are growth restricted in utero in several studies. We previously modelled this gene alteration in mice and found that just 2-fold increased expression of Phlda2 resulted in placental endocrine insufficiency. In addition, elevated Phlda2 was found to drive fetal growth restriction (FGR) of transgenic offspring and impaired maternal care by their wildtype mothers. Being born small and being exposed to suboptimal maternal care have both been associated with the increased risk of mental health disorders in human populations. In the current study we probed behavioural consequences of elevated Phlda2 for the offspring. We discovered increased anxiety-like behaviours, deficits in cognition and atypical social behaviours, with the greatest impact on male offspring. Subsequent analysis revealed alterations in the transcriptome of the adult offspring hippocampus, hypothalamus and amygdala, regions consistent with these behavioural observations. The inclusion of a group of fully wildtype controls raised in a normal maternal environment allowed us to attribute behavioural and molecular alterations to the adverse maternal environment induced by placental endocrine insufficiency rather than the specific gene change of elevated Phlda2. Our work demonstrates that a highly common alteration reported in human FGR is associated with negative behavioural outcomes later in life. Importantly, we also establish the experimental paradigm that placental endocrine insufficiency can program atypical behaviour in offspring highlighting the under-appreciated role of placental endocrine insufficiency in driving disorders of later life behaviour.


Assuntos
Retardo do Crescimento Fetal , Placenta , Animais , Ansiedade/genética , Cognição , Feminino , Retardo do Crescimento Fetal/genética , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Comportamento Social
6.
Hum Mol Genet ; 28(18): 3013-3023, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087031

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13. In addition to endocrine and developmental issues, PWS presents with behavioural problems including stereotyped behaviour, impulsiveness and cognitive deficits. The PWS genetic interval contains several brain-expressed small nucleolar (sno) RNA species that are subject to genomic imprinting, including snord115 that negatively regulates post-transcriptional modification of the serotonin 2C receptor (5-HT2CR) pre-mRNA potentially leading to a reduction in 5-HT2CR function. Using the imprinting centre deletion mouse model for PWS (PWSICdel) we have previously shown impairments in a number of behaviours, some of which are abnormally sensitive to 5-HT2CR-selective drugs. In the stop-signal reaction time task test of impulsivity, PWSICdel mice showed increased impulsivity relative to wild-type (WT) littermates. Challenge with the selective 5-HT2CR agonist WAY163909 reduced impulsivity in PWSICdel mice but had no effect on WT behaviour. This behavioural dissociation in was also reflected in differential patterns of immunoreactivity of the immediate early gene c-Fos, with a blunted response to the drug in the orbitofrontal cortex of PWSICdel mice, but no difference in c-Fos activation in the nucleus accumbens. These findings suggest specific facets of response inhibition are impaired in PWSICdel mice and that abnormal 5-HT2CR function may mediate this dissociation. These data have implications for our understanding of the aetiology of PWS-related behavioural traits and translational relevance for individuals with PWS who may seek to control appetite with the new obesity treatment 5-HT2CR agonist lorcaserin.


Assuntos
Impressão Genômica , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Deleção de Sequência , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor 5-HT2C de Serotonina/genética , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
7.
PLoS Genet ; 12(5): e1005993, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153221

RESUMO

Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.


Assuntos
Síndrome de Angelman/genética , Transtorno do Espectro Autista/genética , Herança Paterna/genética , Síndrome de Prader-Willi/genética , Esquizofrenia/genética , Síndrome de Angelman/patologia , Transtorno do Espectro Autista/patologia , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Feminino , Impressão Genômica/genética , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Síndrome de Prader-Willi/patologia , Esquizofrenia/patologia
8.
PLoS Biol ; 12(2): e1001799, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586114

RESUMO

Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.


Assuntos
Tamanho Corporal/genética , Proteína Adaptadora GRB10/genética , Animais , Feminino , Proteína Adaptadora GRB10/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Carioferinas/fisiologia , Lactação/genética , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/fisiologia , Fator de Transcrição STAT5/fisiologia , Proteína Exportina 1
9.
Nature ; 469(7331): 534-8, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21270893

RESUMO

Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.


Assuntos
Alelos , Comportamento Animal/fisiologia , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Impressão Genômica/genética , Animais , Sistema Nervoso Central/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Predomínio Social
10.
Eur J Neurosci ; 42(4): 2105-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26040449

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWS(ICdel) mice) is characterised. It is demonstrated that PWS(ICdel) mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWS(ICdel) mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick-cluster size. Nevertheless, overall consumption by PWS(ICdel) mice for non-caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWS(ICdel) mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWS(ICdel) mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.


Assuntos
Ansiedade/fisiopatologia , Ingestão de Energia/fisiologia , Hiperfagia/etiologia , Motivação/fisiologia , Síndrome de Prader-Willi/complicações , Animais , Apatia/fisiologia , Condicionamento Operante , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Ingestão de Energia/genética , Feminino , Preferências Alimentares/fisiologia , Grelina/sangue , Hiperfagia/genética , Masculino , Camundongos , Camundongos Transgênicos , Motivação/genética , Fenótipo , Síndrome de Prader-Willi/sangue , Síndrome de Prader-Willi/genética
11.
Eur J Neurosci ; 39(11): 1933-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24862335

RESUMO

Rodent models are a key factor in the process of translating psychiatric genetics and genomics findings, allowing us to shed light on how risk-genes confer changes in neurobiology by merging different types of data across fields, from behavioural neuroscience to the burgeoning omics (e.g. genomics, epigenomics, proteomics, etc.). Moreover, they also provide an indispensable first step for drug discovery. However, recent evidence from both clinical and genetic studies highlights possible limitations in the current methods for classifying psychiatric illness, as both symptomology and underlying genetic risk are found to increasingly overlap across disorder diagnoses. Meanwhile, integration of data from animal models across disorders is currently limited. Here, we argue that behavioural neuroscience is in danger of missing informative data because of the practice of trying to 'diagnose' an animal model with a psychiatric illness. What is needed is a shift in emphasis, from seeking to ally an animal model to a specific disorder, to one focused on a more systematic assessment of the neurobiological and behavioural outcomes of any given genetic or environmental manipulation.


Assuntos
Modelos Animais de Doenças , Transtornos Mentais/genética , Camundongos Mutantes/genética , Ratos Mutantes/genética , Animais , Interação Gene-Ambiente , Pleiotropia Genética , Estudo de Associação Genômica Ampla/métodos , Transtornos Mentais/fisiopatologia , Camundongos , Camundongos Mutantes/fisiologia , Polimorfismo Genético , Ratos , Ratos Mutantes/fisiologia
12.
Eur J Neurosci ; 39(4): 520-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24283296

RESUMO

Assessing risk is an essential part of human behaviour and may be disrupted in a number of psychiatric conditions. Currently, in many animal experimental designs the basis of the potential 'risk' is loss or attenuation of reward, which fail to capture 'real-life' risky situations where there is a trade-off between a separate cost and reward. The development of rodent tasks where two separate and conflicting factors are traded against each other has begun to address this discrepancy. Here, we discuss the merits of these risk-taking tasks and describe the development of a novel test for mice - the 'predator-odour risk-taking' task. This paradigm encapsulates a naturalistic approach to measuring risk-taking behaviour where mice have to balance the benefit of gaining a food reward with the cost of exposure to a predator odour using a range of different odours (rat, cat and fox). We show that the 'predator-odour risk-taking' task was sensitive to the trade-off between cost and benefit by demonstrating reduced motivation to collect food reward in the presence of these different predator odours in two strains of mice and, also, if the value of the food reward was reduced. The 'predator-odour risk-taking' task therefore provides a strong platform for the investigation of the genetic substrates of risk-taking behaviour using mouse models, and adds a further dimension to other recently developed rodent tests.


Assuntos
Comportamento Animal , Neurociências/métodos , Recompensa , Assunção de Riscos , Animais , Gatos , Medo , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Reflexo de Sobressalto
13.
Mamm Genome ; 25(1-2): 87-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23974804

RESUMO

Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.


Assuntos
Encéfalo/fisiologia , Expressão Gênica , Genética Comportamental , Impressão Genômica , Adaptação Biológica , Adulto , Animais , Conflito Psicológico , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos
14.
Br J Psychiatry ; 204(2): 108-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311552

RESUMO

BACKGROUND: A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. AIMS: To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. METHOD: We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. RESULTS: We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10(-4)). CONCLUSIONS: We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.


Assuntos
Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Síndrome de Angelman/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/epidemiologia , Impressão Genômica , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Prader-Willi/genética , Adulto Jovem
15.
Front Neurosci ; 18: 1374781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595977

RESUMO

Introduction: Imprinted genes are expressed from one parental allele as a consequence of epigenetic processes initiated in the germline. Consequently, their ability to influence phenotype depends on their parent-of-origin. Recent research suggests that the sex of the individual expressing the imprinted gene is also important. We have previously reported that genetically wildtype (WT) dams carrying and caring for pups mutant for PEG3 exhibit anxiety-like behaviours and their mutant pups show a reduction in ultrasonic vocalisation when separated from their mothers. Sex-specificity was not examined. Methods: WT female mice were mated with WT, heterozygous Peg3-/+ or homozygous Peg3-/- studs to generate all WT (control), 50:50 mixed or 100% mutant litters, respectively, followed by behavioural assessment of both dams and their pups. Results: We reproduced our original finding that WT dams carrying and caring for 100% mutant litters exhibit postpartum anxiety-like symptoms and delayed pup retrieval. Additionally, these WT dams were found to allocate less time to pup-directed care behaviours relative to controls. Male Peg3-deficient pups demonstrated significantly reduced vocalisation with a more subtle communication deficit in females. Postweaning, male mutants exhibited deficits across a number of key social behaviours as did WT males sharing their environment with mutants. Only modest variations in social behaviour were detected in experimental females. Discussion: We have experimentally demonstrated that Peg3 deficiency confined to the offspring causes anxiety in mouse mothers and atypical behaviour including deficits in communication in their male offspring. A male-specific reduction in expression PEG3 in the fetally-derived placenta has previously been associated with maternal depression in human pregnancy. Maternal mood disorders such as depression and anxiety are associated with delays in language development and neuroatypical behaviour more common in sons. Peg3 deficiency could drive the association of maternal and offspring behavioural disorders reported in humans.

16.
Biochem Soc Trans ; 41(3): 721-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23697931

RESUMO

Imprinted genes, those genes subject to parent-of-origin-specific epigenetic marking resulting in monoallelic parent-specific expression, are sensitive to subtle changes in expression dosage. This has been illustrated in a number of experimental models and the fact that both decreased (or complete loss) and increased imprinted gene expression can lead to human diseases. In the present paper, we discuss the consequence of increased dosage of imprinted genes for brain function, focusing on the PWS (Prader-Willi syndrome) locus on human chromosome 15q11-q13 and how predicted increases in dosage of maternally expressed imprinted genes from this interval are associated with a higher risk of developing psychotic illness. The evidence for this comes from individuals with PWS itself and also non-syndromic cases of psychosis in carriers of a maternally derived copy number variant spanning this locus. Of the known imprinted genes in this region, the prime candidate is maternally expressed UBE3A, which encodes E6-AP (E6-associated protein) ubiquitin ligase and has an influence on a number of important neurotransmitter systems. Furthermore, these findings point to the fact that brain function is exquisitely sensitive to both decreases and increases in the expression of imprinted genes.


Assuntos
Encéfalo/metabolismo , Transtornos Cromossômicos/genética , Dosagem de Genes/fisiologia , Impressão Genômica/fisiologia , Deficiência Intelectual/genética , Convulsões/genética , Animais , Encéfalo/fisiopatologia , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 15/fisiologia , Dosagem de Genes/genética , Impressão Genômica/genética , Humanos , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/psicologia , RNA Mensageiro Estocado/genética
17.
Trends Genet ; 25(11): 495-500, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19836099

RESUMO

Recent studies have indicated that genomic imprinting is less conserved in human placenta and fetuses than in mice. Studies in mice confirm evolutionary predictions that imprinted genes have an important role in fetal growth via their effects on placental function, nutrient demand and transfer. Here, I argue that the development of bipedalism in humans might have contributed to a reduced role for imprinted genes in fetal growth. As a consequence of bipedalism, the shape of the human pelvis has changed, leading to a reduced gestation period and smaller 'premature' babies. This overarching selective pressure could, in turn, lead to a relaxation of the silencing of those imprinted genes that reduce fetal growth, a prediction borne out by current data.


Assuntos
Evolução Molecular , Impressão Genômica , Feminino , Desenvolvimento Fetal/genética , Genômica , Humanos , Placenta/metabolismo , Gravidez
18.
Nat Rev Neurosci ; 8(11): 832-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17925812

RESUMO

In a small fraction of mammalian genes--at present estimated at less than 1% of the total--one of the two alleles that is inherited by the offspring is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father. These idiosyncratic loci are known as imprinted genes, and their existence is an evolutionary enigma, as they effectively nullify the advantages of diploidy. Although they are small in number, these genes have important effects on physiology and behaviour, and many are expressed in the brain. There is increasing evidence that imprinted genes influence brain function and behaviour by affecting neurodevelopmental processes.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Impressão Genômica , Animais , Humanos
19.
Transl Psychiatry ; 12(1): 210, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597773

RESUMO

Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.


Assuntos
Impressão Genômica , Transtornos do Neurodesenvolvimento , Animais , Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Epigênese Genética , Humanos , Mamíferos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
20.
Brain Neurosci Adv ; 6: 23982128221097568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615059

RESUMO

In the newborn brain, moderate-severe hypoxia-ischaemia induces glutamate excitotoxicity and inflammation, possibly via dysregulation of candidate astrocytic glutamate transporter (Glt1) and pro-inflammatory cytokines (e.g. Tnfα, Il1ß, Il6). Epigenetic mechanisms may mediate dysregulation. Hypotheses: (1) hypoxia-ischaemia dysregulates mRNA expression of these candidate genes; (2) expression changes in Glt1 are mediated by DNA methylation changes; and (3) methylation values in brain and blood are correlated. Seven-day-old rat pups (n = 42) were assigned to nine groups based on treatment (for each timepoint: naïve (n = 3), sham (n = 3), hypoxia-ischaemia (n = 8) and timepoint for tissue collection (6, 12 and 24 h post-hypoxia). Moderate hypoxic-ischemic brain injury was induced via ligation of the left common carotid artery followed by 100 min hypoxia (8% O2, 36°C). mRNA was quantified in cortex and hippocampus for the candidate genes, myelin (Mbp), astrocytic (Gfap) and neuronal (Map2) markers (qPCR). DNA methylation was measured for Glt1 in cortex and blood (bisulphite pyrosequencing). Hypoxia-ischaemia induced pro-inflammatory cytokine upregulation in both brain regions at 6 h. This was accompanied by gene expression changes potentially indicating onset of astrogliosis and myelin injury. There were no significant changes in expression or promoter DNA methylation of Glt1. This pilot study supports accumulating evidence that hypoxia-ischaemia causes neuroinflammation in the newborn brain and prioritises further expression and DNA methylation analyses focusing on this pathway. Epigenetic blood biomarkers may facilitate identification of high-risk newborns at birth, maximising chances of neuroprotective interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA