Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Med Phys ; 37(3): 1093-109, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20384245

RESUMO

PURPOSE: Cardiac computed tomography is a rapidly emerging technique for noninvasive diagnosis of cardiovascular diseases. Nevertheless, the cardiac motion continues to be a limiting factor. Electrocardiogram-gated cardiac computed tomography reconstruction methods yield excellent results, but these are limited in their temporal resolution due to the mechanical movement of the gantry, and lead to residual motion blurring artifacts. If the motion of the cardiac region of interest is determined, motion compensated gated reconstructions can be applied to reduce motion artifacts. In this paper it is shown that elastic image registration methods can be an accurate solution to determine the cardiac motion. A method, which combines elastic registration and iterative computed tomography reconstruction methods delivering motion-corrected images of a chosen cardiac region of interest, is introduced. METHODS: Using a gated four-dimensional region of interest image data set, a fully automatic elastic image registration is applied to recover a cardiac displacement field from a reference phase to a number of phases within the RR interval. Here, a stochastic optimizer and multiresolution approach are adopted to speed up the registration process. Subsequently, motion-compensated iterative reconstruction using the determined motion field is carried out. For the image representation volume-adapted spherical basis functions (blobs) are used to take the volume change caused by a divergent motion vector field into account. RESULTS: The method is evaluated on phantom data and on four clinical data sets at a strong cardiac motion phase. Comparing the method to standard gated iterative reconstruction results shows that motion compensation strongly improves the image quality in these phases. A qualitative and quantitative accuracy study is presented for the estimated cardiac motion field. For the first time a blob-volume adaptation is applied on clinical data, and in the case of divergent motion it yields improved image quality. CONCLUSIONS: A fully automatic local cardiac motion compensated gated iterative method with volume-adapted blobs is proposed. The method leads to excellent motion-corrected images which outperform nonmotion corrected results in phases of strong cardiac motion. In clinical cases, a volume-dependent blob-footprint adaptation proves to be a good solution to take care of the change in the blob volume caused by a divergent motion field.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Coração/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Inteligência Artificial , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
2.
PLoS One ; 14(2): e0213002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818345

RESUMO

BACKGROUND AND PURPOSE: In prostate cancer treatment with external beam radiation therapy (EBRT), prostate motion and internal changes in tissue distribution can lead to a decrease in plan quality. In most currently used planning methods, the uncertainties due to prostate motion are compensated by irradiating a larger treatment volume. However, this could cause underdosage of the treatment volume and overdosage of the organs at risk (OARs). To reduce this problem, in this proof of principle study we developed and evaluated a novel adaptive planning method. The strategy proposed corrects the dose delivered by each beam according to the actual position of the target in order to produce a final dose distribution dosimetrically as similar as possible to the prescribed one. MATERIAL AND METHODS: Our adaptive planning method was tested on a phantom case and on a clinical case. For the first, a pilot study was performed on an in-silico pelvic phantom. A "library" of intensity modulated RT (IMRT) plans corresponding to possible positions of the prostate during a treatment fraction was generated at planning stage. Then a 3D random walk model was used to simulate possible displacements of the prostate during the treatment fraction. At treatment stage, at the end of each beam, based on the current position of the target, the beam from the library of plans, which could reproduce the best approximation of the prescribed dose distribution, was selected and delivered. In the clinical case, the same approach was used on two prostate cancer patients: for the first a tissue deformation was simulated in-silico and for the second a cone beam CT (CBCT) taken during the treatment was used to simulate an intra-fraction change. Then, dosimetric comparisons with the standard treatment plan and, for the second patient, also with an isocenter shift correction, were performed. RESULTS: For the phantom case, the plan generated using the adaptive planning method was able to meet all the dosimetric requirements and to correct for a misdosage of 13% of the dose prescription on the prostate. For the first clinical case, the standard planning method caused underdosage of the seminal vesicles, respectively by 5% and 4% of the prescribed dose, when the position changes for the target were correctly taken into account. The proposed adaptive planning method corrected any possible missed target coverage, reducing at the same time the dose on the OARs. For the second clinical case, both with the standard planning strategy and with the isocenter shift correction target coverage was significantly worsened (in particular uniformity) and some organs exceeded some toxicity objectives. While with our approach, the most uniform coverage for the target was produced and systematically the lowest toxicity values for the organs at risk were achieved. CONCLUSIONS: In our proof of principle study, the adaptive planning method performed better than the standard planning and the isocenter shift methods for prostate EBRT. It improved the coverage of the treatment volumes and lowered the dose to the OARs. This planning method is particularly promising for hypofractionated IMRT treatments in which a higher precision and control on dose deposition are needed. Further studies will be performed to test more extensively the proposed adaptive planning method and to evaluate it at a full clinical level.


Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Sistemas Computacionais , Tomografia Computadorizada de Feixe Cônico , Humanos , Masculino , Movimento (Física) , Órgãos em Risco , Imagens de Fantasmas , Estudo de Prova de Conceito , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA