Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(38): 11581-11589, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36095320

RESUMO

Coating defects often arise during application in the flash stage, which constitutes the ∼10 min interval immediately following film application when the solvent evaporates. Understanding the transient rheology and kinematics of a coating system is necessary to avoid defects such as sag, which results in undesirable appearance. A new technique named variable angle inspection microscopy (VAIM) aimed at measuring these phenomena was developed and is summarized herein. The essence of this new, non-invasive, rheological technique is the measurement of a flow field in response to a known gravitational stress. VAIM was used to measure the flow profile through a volume of a liquid thin film at an arbitrary orientation. Flow kinematics of the falling thin film was inferred from particle tracking measurements. Initial benchmarking measurements in the absence of drying tracked the velocity of silica probe particles in ∼140 µm thick films of known viscosity, much greater than water, at incline angles of 5° and 10°. Probe particles were tracked through the entire thickness of the film and at speeds as high as ∼100 µm/s. The sag flow field was well resolved in ∼10 µm thick cross sections, and in general the VAIM measurements were highly reproducible. Complementary profilometer measurements of film thinning were utilized to predict sag velocities with a known model. The model predictions showed good agreement with measurements, which validated the effectiveness of this new method in relating material properties and flow kinematics.

2.
ACS Omega ; 4(8): 13034-13041, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460430

RESUMO

Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agent-based simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary.

3.
ACS Appl Mater Interfaces ; 10(37): 30925-30929, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30142982

RESUMO

Janus particles have anisotropy in surface chemistry or composition that will effect dynamics and interactions with neighboring surfaces. One specific type of Janus particle is that consisting of a native micrometer-scale particle with a cap of gold, platinum, or another metal deposited with a typical thicknesses of ∼10 nm. A key characteristic of metal-capped Janus particles prepared with glancing angle deposition is the cap thickness. The nominal thickness is usually assumed to be uniform across the cap for modeling or interpretation of data, but the vapor deposition fabrication process likely does not produce such a cap because of the particle's curvature. These nonuniformities in the cap thickness may have a profound impact on Janus particle dynamics at equilibrium and in response to external fields. Herein, we summarize an experimental technique that utilizes focused ion beam slicing, image analysis, and results for the direct and local measure of cap thickness for 5 µm polystyrene spheres with a gold cap of nominal thicknesses of 10 or 20 nm. We found the cap varied in thickness continuously along the perimeter of the particle and also that the deposition rate, varying between 0.5 and 2.0 Å/s, did not significantly alter the way in which the thickness varied. These data support the hypothesis that cap thickness of a Janus sphere will vary across the gold surface contour, while demonstrating a feasible route for direct measurement of Janus particle cap thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA