Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(6): 3514-3523, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35201763

RESUMO

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.


Assuntos
Compostos de Metilmercúrio , Percas , Animais , Larva , Cadeias de Markov , Compostos de Metilmercúrio/toxicidade , Percas/fisiologia , Natação
2.
Biol Invasions ; 22(8): 2473-2495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32624679

RESUMO

Bighead carp H. nobilis and silver carp Hypothalmichthys molitrix (collectively bigheaded carps, BHC) are invasive planktivorous fishes that threaten to enter the Laurentian Great Lakes and disrupt food webs. To assess the likelihood of BHC establishment and their likely effects on the food web of Saginaw Bay, Lake Huron, we developed a multi-species individual-based bioenergetics model that tracks individual bighead and silver carp, four key fish species, and seven prey biomass groups over 50 years. The model tracks the daily consumption, mortality and growth of all individuals and the biomass dynamics of interacting prey pools. We ran simulation scenarios to determine the likelihood of BHC establishment under initial introductions from 5 to 1 million yearling and older individuals, and assuming variable age-0 carp survival rates (high, intermediate, and low). We bounded the survival of age-0 BHC as recruitment continues to be one of the biggest unknowns. We also simulated the potential effects of an established population of 1 million bighead carp or silver carp assuming variation in age-0 survival. Results indicated that as few as 10 BHC could establish a population assuming high or intermediate age-0 survival, but at least 100,000 individuals were needed to establish a population assuming low age-0 survival. BHC had negative effects on plankton and planktivorous fish biomass, which increased with BHC density. However, piscivorous walleye Sander vitreus appeared to benefit from BHC establishment. The potential for BHC to establish and affect ecologically and economically important fish species in Saginaw Bay is a cause for concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA