Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021065

RESUMO

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sequência de Bases , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Metotrexato/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Reprodutibilidade dos Testes , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
3.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
4.
Gastroenterology ; 165(5): 1180-1196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507073

RESUMO

BACKGROUND & AIMS: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS: We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.


Assuntos
Colite , Doença de Crohn , Animais , Doença de Crohn/genética , Doença de Crohn/patologia , Constrição Patológica , Intestinos/patologia , Colite/patologia , Fibroblastos/patologia
5.
FASEB J ; 36(5): e22290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344227

RESUMO

The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.


Assuntos
Actomiosina , Miosinas , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Mucosa Intestinal/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo
6.
Am J Pathol ; 191(1): 40-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039354

RESUMO

Chronic inflammatory diseases cause profound alterations in tissue homeostasis, including unchecked activation of immune and nonimmune cells leading to disease complications such as aberrant tissue repair and fibrosis. Current anti-inflammatory therapies are often insufficient in preventing or reversing these complications. Remodeling of the intracellular cytoskeleton is critical for cell activation in inflamed and fibrotic tissues; however, the cytoskeleton has not been adequately explored as a therapeutic target in inflammation. Septins are GTP-binding proteins that self-assemble into higher order cytoskeletal structures. The septin cytoskeleton exhibits a number of critical cellular functions, including regulation of cell shape and polarity, cytokinesis, cell migration, vesicle trafficking, and receptor signaling. Surprisingly, little is known about the role of the septin cytoskeleton in inflammation. This article reviews emerging evidence implicating different septins in the regulation of host-pathogen interactions, immune cell functions, and tissue fibrosis. Targeting of the septin cytoskeleton as a potential future therapeutic intervention in human inflammatory and fibrotic diseases is also discussed.


Assuntos
Citoesqueleto/metabolismo , Fibrose/metabolismo , Inflamação/metabolismo , Septinas/metabolismo , Animais , Humanos
7.
Cell Mol Life Sci ; 78(2): 621-633, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32880660

RESUMO

Remodeling of the intracellular cytoskeleton plays a key role in accelerating tumor growth and metastasis. Targeting different cytoskeletal elements is important for existing and future anticancer therapies. Anillin is a unique scaffolding protein that interacts with major cytoskeletal structures, e.g., actin filaments, microtubules and septin polymers. A well-studied function of this scaffolding protein is the regulation of cytokinesis at the completion of cell division. Emerging evidence suggest that anillin has other important activities in non-dividing cells, including control of intercellular adhesions and cell motility. Anillin is markedly overexpressed in different solid cancers and its high expression is commonly associated with poor prognosis of patient survival. This review article summarizes rapidly accumulating evidence that implicates anillin in the regulation of tumor growth and metastasis. We focus on molecular and cellular mechanisms of anillin-dependent tumorigenesis that include both canonical control of cytokinesis and novel poorly understood functions as a nuclear regulator of the transcriptional reprogramming and phenotypic plasticity of cancer cells.


Assuntos
Carcinogênese/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese/patologia , Diferenciação Celular , Citocinese , Humanos , Metástase Neoplásica/patologia , Neoplasias/patologia
8.
Breast Cancer Res ; 22(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910867

RESUMO

BACKGROUND: Breast cancer metastasis is driven by a profound remodeling of the cytoskeleton that enables efficient cell migration and invasion. Anillin is a unique scaffolding protein regulating major cytoskeletal structures, such as actin filaments, microtubules, and septin polymers. It is markedly overexpressed in breast cancer, and high anillin expression is associated with poor prognosis. The aim of this study was to investigate the role of anillin in breast cancer cell migration, growth, and metastasis. METHODS: CRISPR/Cas9 technology was used to deplete anillin in highly metastatic MDA-MB-231 and BT549 cells and to overexpress it in poorly invasive MCF10AneoT cells. The effects of anillin depletion and overexpression on breast cancer cell motility in vitro were examined by wound healing and Matrigel invasion assays. Assembly of the actin cytoskeleton and matrix adhesion were evaluated by immunofluorescence labeling and confocal microscopy. In vitro tumor development was monitored by soft agar growth assays, whereas cancer stem cells were examined using a mammosphere formation assay and flow cytometry. The effects of anillin knockout on tumor growth and metastasis in vivo were determined by injecting control and anillin-depleted breast cancer cells into NSG mice. RESULTS: Loss-of-function and gain-of-function studies demonstrated that anillin is necessary and sufficient to accelerate migration, invasion, and anchorage-independent growth of breast cancer cells in vitro. Furthermore, loss of anillin markedly attenuated primary tumor growth and metastasis of breast cancer in vivo. In breast cancer cells, anillin was localized in the nucleus; however, knockout of this protein affected the cytoplasmic/cortical events, e.g., the organization of actin cytoskeleton and cell-matrix adhesions. Furthermore, we observed a global transcriptional reprogramming of anillin-depleted breast cancer cells that resulted in suppression of their stemness and induction of the mesenchymal to epithelial trans-differentiation. Such trans-differentiation was manifested by the upregulation of basal keratins along with the increased expression of E-cadherin and P-cadherin. Knockdown of E-cadherin restored the impaired migration and invasion of anillin-deficient breast cancer cells. CONCLUSION: Our study demonstrates that anillin plays essential roles in promoting breast cancer growth and metastatic dissemination in vitro and in vivo and unravels novel functions of anillin in regulating breast cancer stemness and differentiation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L358-L368, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30489157

RESUMO

Respiratory syncytial virus (RSV) is a major cause of hospitalization for infants and young children worldwide. RSV is known to infect epithelial cells and increase the permeability of model airway epithelial monolayers in vitro. We hypothesized that RSV infection also induces airway barrier dysfunction in vivo. C57BL/6 mice were intranasally inoculated with RSV, and on day 4 post-inoculation were examined for viral replication, lung inflammation, and barrier integrity as well as the structure and molecular composition of epithelial junctions. In parallel, primary mouse tracheal epithelial cells (mTEC) were cultured for in vitro studies. RSV-infected mice lost weight and showed significant peribronchial inflammation compared with noninfected controls and UV-inactivated RSV-inoculated animals. RSV infection increased the permeability of the airway epithelial barrier and altered the molecular composition of epithelial tight junctions. The observed RSV-induced barrier disruption was accompanied by decreased expression of several tight-junction proteins and accumulation of cleaved extracellular fragments of E-cadherin in bronchoalveolar lavage and mTEC supernatants. Similarly, in vitro RSV infection of mTEC monolayers resulted in enhanced permeability and disruption of tight-junction structure. Furthermore, incubation of mTEC monolayers with a recombinant fragment of E-cadherin caused tight-junction disassembly. Taken together, these data indicate that RSV infection leads to airway barrier dysfunction in vivo, mediated by either decreased expression or cleavage of junctional proteins. Our observations provide further insights into the pathophysiology of RSV infection and provide a rationale for development of barrier-protecting agents to alleviate the pathogenic effects of RSV infection.


Assuntos
Células Epiteliais/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Junções Íntimas/virologia , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Sistema Respiratório/metabolismo , Junções Íntimas/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1183-1194, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28322932

RESUMO

The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Doenças Inflamatórias Intestinais/patologia , Absorção Intestinal , Mucosa Intestinal/patologia , Transporte Proteico
11.
Biochem Biophys Res Commun ; 486(4): 951-957, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28359759

RESUMO

A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo.


Assuntos
Diferenciação Celular/fisiologia , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos
12.
Am J Pathol ; 186(4): 844-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878213

RESUMO

The actin cytoskeleton is a crucial regulator of the intestinal mucosal barrier, controlling the assembly and function of epithelial adherens and tight junctions (AJs and TJs). Junction-associated actin filaments are dynamic structures that undergo constant turnover. Members of the actin-depolymerizing factor (ADF) and cofilin protein family play key roles in actin dynamics by mediating filament severing and polymerization. We examined the roles of ADF and cofilin-1 in regulating the structure and functions of AJs and TJs in the intestinal epithelium. Knockdown of either ADF or cofilin-1 by RNA interference increased the paracellular permeability of human colonic epithelial cell monolayers to small ions. Additionally, cofilin-1, but not ADF, depletion increased epithelial permeability to large molecules. Loss of either ADF or cofilin-1 did not affect the steady-state morphology of AJs and TJs but attenuated de novo junctional assembly. The observed defects in AJ and TJ formation were accompanied by delayed assembly of the perijunctional filamentous actin belt. A total loss of ADF expression in mice did not result in a defective mucosal barrier or in spontaneous gut inflammation. However, ADF-null mice demonstrated increased intestinal permeability and exaggerated inflammation during dextran sodium sulfate-induced colitis. Our findings demonstrate novel roles for ADF and cofilin-1 in regulating the remodeling and permeability of epithelial junctions, as well as the role of ADF in limiting the severity of intestinal inflammation.


Assuntos
Cofilina 1/metabolismo , Destrina/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Citoesqueleto/metabolismo , Destrina/genética , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Permeabilidade
13.
Cell Microbiol ; 18(12): 1857-1870, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27302486

RESUMO

AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.


Assuntos
Proteínas de Bactérias/genética , Ácidos e Sais Biliares/toxicidade , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo III/genética , Vibrio cholerae/genética , Proteínas de Bactérias/metabolismo , Bile/química , Células CACO-2 , Morte Celular/efeitos dos fármacos , Deleção de Genes , Humanos , Pressão Osmótica , Transdução de Sinais , Sistemas de Secreção Tipo III/metabolismo , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/patogenicidade , Virulência
14.
Cell Mol Life Sci ; 72(16): 3185-3200, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25809162

RESUMO

Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Contráteis/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actomiosina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proteínas Contráteis/genética , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Proteínas dos Microfilamentos/genética , Microscopia de Fluorescência , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrina/metabolismo
15.
J Biol Chem ; 289(4): 2424-39, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24311785

RESUMO

Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of ß1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates ß1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Animais , Bovinos , Adesão Celular/fisiologia , Linhagem Celular , Células Epiteliais/citologia , Matriz Extracelular/genética , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Integrina beta1/genética , Paxilina/genética , Paxilina/metabolismo , Fosforilação/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
16.
Am J Physiol Gastrointest Liver Physiol ; 308(9): G745-56, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792565

RESUMO

Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.


Assuntos
Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Actomiosina/metabolismo , Junções Aderentes/patologia , Animais , Células CACO-2 , Polaridade Celular , Cistos/metabolismo , Cistos/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Morfogênese , Permeabilidade , Interferência de RNA , Transdução de Sinais , Junções Íntimas/patologia , Transfecção
17.
J Virol ; 87(20): 11088-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926335

RESUMO

Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Proteína Quinase C/biossíntese , Vírus Sinciciais Respiratórios/patogenicidade , Técnicas de Cultura de Células , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Condutividade Elétrica , Humanos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia
18.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474334

RESUMO

The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.


Assuntos
Citoesqueleto , Junções Intercelulares , Animais , Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Chaperonas Moleculares/metabolismo , Mamíferos/metabolismo
19.
J Leukoc Biol ; 115(3): 450-462, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820034

RESUMO

The T cell marker CD6 regulates both T cells and target cells during inflammatory responses by interacting with its receptors. However, only a few receptors binding to the extracellular domains of CD6 have been identified, and cellular events induced by CD6 engagement with its receptors in target cells remain poorly understood. In this study, we identified CD44 as a novel CD6 receptor by proximity labeling and confirmed the new CD6-CD44 interaction by biochemical and biophysical approaches. CD44 and the other 2 known CD6 receptors, CD166 and CDCP1, were distributed diffusely on resting retinal pigment epithelium (RPE) cells but clustered together to form a receptor complex upon CD6 binding. CD6 stimulation induced dramatic remodeling of the actomyosin cytoskeleton in RPE cells mediated by activation of RhoA, and Rho-associated kinase signaling, resulting in increased myosin II phosphorylation. Such actomyosin activation triggered the disassembly of tight junctions responsible for RPE barrier integrity in a process that required all components of the tripartite CD6 receptor complex. These data provided new insights into the mechanisms by which CD6 mediates T cell-driven disruption of tissue barriers during inflammation.


Assuntos
Actomiosina , Transdução de Sinais , Actomiosina/metabolismo , Complexo CD3/metabolismo , Citoesqueleto/metabolismo , Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo
20.
J Biol Chem ; 287(8): 5928-41, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22194596

RESUMO

Intracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood. In this study, we found that either siRNA-mediated knockdown of αSNAP or expression of its dominant negative mutant induced epithelial cell apoptosis. Apoptosis was not caused by activation of the major prodeath regulators Bax and p53 and was independent of a key αSNAP binding partner, NSF. Instead, death of αSNAP-depleted cells was accompanied by down-regulation of the antiapoptotic Bcl-2 protein; it was mimicked by inhibition and attenuated by overexpression of Bcl-2. Knockdown of αSNAP resulted in impairment of Golgi to endoplasmic reticulum (ER) trafficking and fragmentation of the Golgi. Moreover, pharmacological disruption of ER-Golgi transport by brefeldin A and eeyarestatin 1 or siRNA-mediated depletion of an ER/Golgi-associated p97 ATPase recapitulated the effects of αSNAP inhibition by decreasing Bcl-2 level and triggering apoptosis. These results reveal a novel role for αSNAP in promoting epithelial cell survival by unique mechanisms involving regulation of Bcl-2 expression and Golgi biogenesis.


Assuntos
Apoptose/genética , Regulação para Baixo/genética , Células Epiteliais/citologia , Complexo de Golgi/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/deficiência , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Adenosina Trifosfatases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Complexo de Golgi/efeitos dos fármacos , Células HCT116 , Humanos , Proteínas Nucleares/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA