Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(2): 326-31, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715749

RESUMO

Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.


Assuntos
DNA/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Sequência de Bases , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Elementos de Resposta/genética , Especificidade por Substrato , Fatores de Transcrição/química
2.
J Biol Chem ; 288(12): 8445-8455, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23355472

RESUMO

Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg(2+) and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.


Assuntos
Proteínas de Bactérias/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Desoxirribonuclease IV (Fago T4-Induzido)/química , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Escherichia coli , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA