Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2308696120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991941

RESUMO

Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.


Assuntos
Atmosfera , Nitratos , Atmosfera/química , Clima , Compostos Orgânicos/química , Oceano Pacífico , Aerossóis/química
2.
J Am Chem Soc ; 146(19): 13427-13437, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712858

RESUMO

This study assesses the atmospheric impact of reactions between unsaturated hydrocarbons such as isoprene and monoterpenes and peroxy radicals containing various functional groups. We find that reactions between alkenes and acyl peroxy radicals have reaction rates high enough to be feasible in the atmosphere and lead to high molar mass accretion products. Moreover, the reaction between unsaturated hydrocarbons and acyl peroxy radicals leads to an alkyl radical, to which molecular oxygen rapidly adds. This finding is confirmed by both theoretical calculations and experiments. The formed perester peroxy radical may either undergo further H-shift reactions or react bimolecularly. The multifunctional oxygenated compounds formed through acyl peroxy radical + alkene reactions are potentially important contributors to particle formation and growth. Thus, acyl peroxy radical-initiated oxidation chemistry may need to be included in atmospheric models.

3.
J Am Chem Soc ; 146(22): 15562-15575, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771742

RESUMO

Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.

4.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156945

RESUMO

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Assuntos
Bainha de Mielina , Água , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 91(3): 987-1001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936313

RESUMO

PURPOSE: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS: To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS: The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION: The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Conceitos Matemáticos
6.
Blood ; 139(5): 761-778, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780648

RESUMO

The chronic phase of chronic myeloid leukemia (CP-CML) is characterized by the excessive production of maturating myeloid cells. As CML stem/progenitor cells (LSPCs) are poised to cycle and differentiate, LSPCs must balance conservation and differentiation to avoid exhaustion, similar to normal hematopoiesis under stress. Since BCR-ABL1 tyrosine kinase inhibitors (TKIs) eliminate differentiating cells but spare BCR-ABL1-independent LSPCs, understanding the mechanisms that regulate LSPC differentiation may inform strategies to eliminate LSPCs. Upon performing a meta-analysis of published CML transcriptomes, we discovered that low expression of the MS4A3 transmembrane protein is a universal characteristic of LSPC quiescence, BCR-ABL1 independence, and transformation to blast phase (BP). Several mechanisms are involved in suppressing MS4A3, including aberrant methylation and a MECOM-C/EBPε axis. Contrary to previous reports, we find that MS4A3 does not function as a G1/S phase inhibitor but promotes endocytosis of common ß-chain (ßc) cytokine receptors upon GM-CSF/IL-3 stimulation, enhancing downstream signaling and cellular differentiation. This suggests that LSPCs downregulate MS4A3 to evade ßc cytokine-induced differentiation and maintain a more primitive, TKI-insensitive state. Accordingly, knockdown (KD) or deletion of MS4A3/Ms4a3 promotes TKI resistance and survival of CML cells ex vivo and enhances leukemogenesis in vivo, while targeted delivery of exogenous MS4A3 protein promotes differentiation. These data support a model in which MS4A3 governs response to differentiating myeloid cytokines, providing a unifying mechanism for the differentiation block characteristic of CML quiescence and BP-CML. Promoting MS4A3 reexpression or delivery of ectopic MS4A3 may help eliminate LSPCs in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endocitose , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Citocinas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Membrana/genética , Camundongos , Transcriptoma , Células Tumorais Cultivadas
7.
Environ Sci Technol ; 58(24): 10664-10674, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38850427

RESUMO

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.


Assuntos
Material Particulado , Emissões de Veículos , Poluentes Atmosféricos , Monitoramento Ambiental , Tamanho da Partícula , Aerossóis
8.
Phys Chem Chem Phys ; 26(3): 2560-2567, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170853

RESUMO

We present an accurate and cost-effective method for investigating the accretion reactions between unsaturated hydrocarbons and oxidized organic radicals. We use accretion between isoprene and primary, secondary and tertiary alkyl peroxy radicals as model reactions. We show that a systematic semiempirical transition state search can lead to better transition state structures than relaxed scanning with density functional theory with a significant gain in computational efficiency. Additionally, we suggest accurate and effective quantum chemical methods to study accretion reactions between large unsaturated hydrocarbons and oxidized organic radicals. Furthermore, we examine the atmospheric relevance of these types of reactions by calculating the bimolecular reaction rate coefficients and formation rates under atmospheric conditions from the quantum chemical reaction energy barriers.

9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479177

RESUMO

Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.

10.
Neuroimage ; 275: 120168, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187364

RESUMO

PURPOSE: To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution. METHODS: We first proposed a circular-EPI trajectory with partial Fourier sampling on both the readout and phase-encoding directions to minimize the echo-train-length and echo time. We then utilized this trajectory in an interleaved two-shot EPI acquisition with reversed phase-encoding polarity, to aid in the correction of off-resonance-induced image distortions and provide complementary k-space coverage in the missing partial Fourier regions. Using model-based reconstruction with structured low-rank constraint and smooth phase prior, we corrected the shot-to-shot phase variations across the two shots and recover the missing k-space data. Finally, we combined the proposed acquisition/reconstruction framework with an SNR-efficient RF-encoded simultaneous multi-slab technique, termed gSlider, to achieve high-fidelity 720 µm and 500 µm isotropic resolution in-vivo diffusion MRI. RESULTS: Both simulation and in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide distortion-corrected diffusion imaging at the mesoscale with markedly reduced T2*-blurring. The in-vivo results of 720 µm and 500 µm datasets show high-fidelity diffusion images with reduced image blurring and echo time using the proposed approaches. CONCLUSIONS: The proposed method provides high-quality distortion-corrected diffusion-weighted images with ∼40% reduction in the echo-train-length and T2* blurring at 500µm-isotropic-resolution compared to standard multi-shot EPI.


Assuntos
Encéfalo , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Simulação por Computador
11.
Phys Chem Chem Phys ; 25(41): 28205-28212, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823187

RESUMO

A series of acyl peroxy radical H-shifts were systematically studied using computational approaches. Acyl peroxy radicals were categorized into small- (ethanal-pentanal), medium- (hexanal and heptanal) and large-sized (octanal and nonanal) molecules. The H-shifts spanning from 1,4 to 1,9 were inspected for each studied system. For all acyl peroxy radicals, it is the combination of barrier heights and quantum mechanical tunneling that explains the yield of the peracid alkyl radical product. We used the ROHF-ROCCSD(T)-F12a/VDZ-F12//ωB97X-D/aug-cc-pVTZ level of theory to estimate the barrier heights and the subsequent rate coefficients with the exception of the smallest acyl peroxy radical ethanal, for which MN15 density functional was applied. The estimated multiconformer H-shift rate coefficients were found to be in the range of 10-2 s-1 to 10-1 s-1 for the fastest H-migrations. The determined rates imply that these H-shift reactions are often competitive with other RO2 loss processes and should be considered as a path to functionalization in modelling not only rural but also urban air quality.

12.
Magn Reson Med ; 88(1): 133-150, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35199877

RESUMO

PURPOSE: To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS: The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS: The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Retrospectivos
13.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119266

RESUMO

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Assuntos
Monoterpenos , Aerossóis/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxirredução
14.
Environ Sci Technol ; 56(19): 14166-14177, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126141

RESUMO

Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.

15.
Environ Sci Technol ; 56(19): 13931-13944, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137236

RESUMO

Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4 production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.

16.
Magn Reson Med ; 86(4): 2064-2075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34046924

RESUMO

PURPOSE: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. METHODS: A T2 blip-up/down EPI acquisition with generalized slice-dithered enhanced resolution (T2 -BUDA-gSlider) is proposed. A RF-encoded multi-slab spin-echo (SE) EPI acquisition with multiple TEs was developed to obtain high SNR efficiency with reduced TR. This was combined with an interleaved 2-shot EPI acquisition using blip-up/down phase encoding. An estimated field map was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to achieve distortion-free and robust reconstruction for each slab without navigation. A Bloch simulated subspace model was integrated into gSlider reconstruction and used for T2 quantification. RESULTS: In vivo results demonstrated that the T2 values estimated by the proposed method were consistent with gold standard spin-echo acquisition. Compared to the reference 3D fast spin echo (FSE) images, distortion caused by off-resonance and eddy current effects were effectively mitigated. CONCLUSION: BUDA-gSlider SE-EPI acquisition and gSlider-subspace joint reconstruction enabled distortion-free whole-brain T2 mapping in 2 min at ~1 mm3 isotropic resolution, which could bring significant benefits to related clinical and neuroscience applications.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento Tridimensional
17.
Magn Reson Med ; 86(2): 791-803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748985

RESUMO

PURPOSE: We combine SNR-efficient acquisition and model-based reconstruction strategies with newly available hardware instrumentation to achieve distortion-free in vivo diffusion MRI of the brain at submillimeter-isotropic resolution with high fidelity and sensitivity on a clinical 3T scanner. METHODS: We propose blip-up/down acquisition (BUDA) for multishot EPI using interleaved blip-up/blip-down phase encoding and incorporate B0 forward-modeling into structured low-rank reconstruction to enable distortion-free and navigator-free diffusion MRI. We further combine BUDA-EPI with an SNR-efficient simultaneous multislab acquisition (generalized slice-dithered enhanced resolution ["gSlider"]), to achieve high-isotropic-resolution diffusion MRI. To validate gSlider BUDA-EPI, whole-brain diffusion data at 860-µm and 780-µm data sets were acquired. Finally, to improve the conditioning and minimize noise penalty in BUDA reconstruction at very high resolutions where B0 inhomogeneity can have a detrimental effect, the level of B0 inhomogeneity was reduced by incorporating slab-by-slab dynamic shimming with a 32-channel AC/DC coil into the acquisition. Whole-brain 600-µm diffusion data were then acquired with this combined approach of gSlider BUDA-EPI with dynamic shimming. RESULTS: The results of 860-µm and 780-µm datasets show high geometry fidelity with gSlider BUDA-EPI. With dynamic shimming, the BUDA reconstruction's noise penalty was further alleviated. This enables whole-brain 600-µm isotropic resolution diffusion imaging with high image quality. CONCLUSIONS: The gSlider BUDA-EPI method enables high-quality, distortion-free diffusion imaging across the whole brain at submillimeter resolution, where the use of multicoil dynamic B0 shimming further improves reconstruction performance, which can be particularly useful at very high resolutions.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar
18.
Magn Reson Med ; 84(6): 3423-3437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686178

RESUMO

PURPOSE: ESPIRiT is a parallel imaging method that estimates coil sensitivity maps from the auto-calibration region (ACS). This requires choosing several parameters for the optimal map estimation. While fairly robust to these parameter choices, occasionally, poor selection can result in reduced performance. The purpose of this work is to automatically select parameters in ESPIRiT for more robust and consistent performance across a variety of exams. METHODS: By viewing ESPIRiT as a denoiser, Stein's unbiased risk estimate (SURE) is leveraged to automatically optimize parameter selection in a data-driven manner. The optimum parameters corresponding to the minimum true squared error, minimum SURE as derived from densely sampled, high-resolution, and non-accelerated data and minimum SURE as derived from ACS are compared using simulation experiments. To avoid optimizing the rank of ESPIRiT's auto-calibrating matrix (one of the parameters), a heuristic derived from SURE-based singular value thresholding is also proposed. RESULTS: Simulations show SURE derived from the densely sampled, high-resolution, and non-accelerated data to be an accurate estimator of the true mean squared error, enabling automatic parameter selection. The parameters that minimize SURE as derived from ACS correspond well to the optimal parameters. The soft-threshold heuristic improves computational efficiency while providing similar results to an exhaustive search. In-vivo experiments verify the reliability of this method. CONCLUSIONS: Using SURE to determine ESPIRiT parameters allows for automatic parameter selections. In-vivo results are consistent with simulation and theoretical results.


Assuntos
Algoritmos , Calibragem , Simulação por Computador , Probabilidade , Reprodutibilidade dos Testes
19.
NMR Biomed ; 33(12): e4271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32078756

RESUMO

High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Dinâmica não Linear , Artefatos , Humanos , Processamento de Imagem Assistida por Computador
20.
Magn Reson Med ; 82(4): 1343-1358, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106902

RESUMO

PURPOSE: To introduce a combined machine learning (ML)- and physics-based image reconstruction framework that enables navigator-free, highly accelerated multishot echo planar imaging (msEPI) and demonstrate its application in high-resolution structural and diffusion imaging. METHODS: Single-shot EPI is an efficient encoding technique, but does not lend itself well to high-resolution imaging because of severe distortion artifacts and blurring. Although msEPI can mitigate these artifacts, high-quality msEPI has been elusive because of phase mismatch arising from shot-to-shot variations which preclude the combination of the multiple-shot data into a single image. We utilize deep learning to obtain an interim image with minimal artifacts, which permits estimation of image phase variations attributed to shot-to-shot changes. These variations are then included in a joint virtual coil sensitivity encoding (JVC-SENSE) reconstruction to utilize data from all shots and improve upon the ML solution. RESULTS: Our combined ML + physics approach enabled Rinplane × multiband (MB) = 8- × 2-fold acceleration using 2 EPI shots for multiecho imaging, so that whole-brain T2 and T2 * parameter maps could be derived from an 8.3-second acquisition at 1 × 1 × 3-mm3 resolution. This has also allowed high-resolution diffusion imaging with high geometrical fidelity using 5 shots at Rinplane × MB = 9- × 2-fold acceleration. To make these possible, we extended the state-of-the-art MUSSELS reconstruction technique to simultaneous multislice encoding and used it as an input to our ML network. CONCLUSION: Combination of ML and JVC-SENSE enabled navigator-free msEPI at higher accelerations than previously possible while using fewer shots, with reduced vulnerability to poor generalizability and poor acceptance of end-to-end ML approaches.


Assuntos
Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA