Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 26(34): 22454-22462, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140998

RESUMO

We have investigated the in-plane local structure of the Ba0.6K0.4Fe2As2 superconductor by polarized Fe K-edge extended X-ray absorption fine structure (EXAFS) measurements with temperature. The near neighbor bond distances and their stiffness, measured by polarized EXAFS in two orthogonal directions, are different suggesting in-plane anisotropy of the atomic displacements and local orthorhombicity in the title system. The X-ray absorption near edge structure (XANES) spectra reveal anisotropy of valence electronic structure that changes anomalously below ∼100 K. The local iron magnetic moment, measured by Fe Kß X-ray emission spectroscopy (XES), increases below the anomalous temperature and shows a decrease in the vicinity of the superconducting transition temperature (Tc ∼ 36 K). The results provide a clear evidence of coupled local lattice, electronic and magnetic degrees of freedom to induce possible nematic fluctuations in an optimally hole doped iron-based superconductor.

2.
Proc Natl Acad Sci U S A ; 108(30): 12238-42, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746905

RESUMO

An ordered phase showing remarkable electronic anisotropy in proximity to the superconducting phase is now a hot issue in the field of high-transition-temperature superconductivity. As in the case of copper oxides, superconductivity in iron arsenides competes or coexists with such an ordered phase. Undoped and underdoped iron arsenides have a magnetostructural ordered phase exhibiting stripe-like antiferromagnetic spin order accompanied by an orthorhombic lattice distortion; both the spin order and lattice distortion break the tetragonal symmetry of crystals of these compounds. In this ordered state, anisotropy of in-plane electrical resistivity is anomalous and difficult to attribute simply to the spin order and/or the lattice distortion. Here, we present the anisotropic optical spectra measured on detwinned BaFe(2)As(2) crystals with light polarization parallel to the Fe planes. Pronounced anisotropy is observed in the spectra, persisting up to an unexpectedly high photon energy of about 2 eV. Such anisotropy arises from an anisotropic energy gap opening below and slightly above the onset of the order. Detailed analysis of the optical spectra reveals an unprecedented electronic state in the ordered phase.

3.
Phys Rev Lett ; 110(13): 137001, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581359

RESUMO

Magnetic excitations in Ba(Fe0.94Co0.06)2As2: are studied by polarized inelastic neutron scattering above and below the superconducting transition. In the superconducting state, we find clear evidence for two resonancelike excitations. At a higher energy of about 8 meV, there is an isotropic resonance mode with weak dispersion along the c direction. In addition, we find a lower excitation at 4 meV that appears only in the c-polarized channel and whose intensity strongly varies with the l component of the scattering vector. These resonance excitations behave remarkably similar to the gap modes in the antiferromagnetic phase of the parent compound BaFe2As2.

4.
Phys Rev Lett ; 110(20): 207001, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167441

RESUMO

We investigated the in-plane resistivity anisotropy for underdoped Ba(Fe(1-x)Co(x))(2)As(2) single crystals with improved quality. We demonstrate that the anisotropy in resistivity in the magnetostructural ordered phase arises from the anisotropy in the residual component which increases in proportion to the Co concentration x. This gives evidence that the anisotropy originates from the impurity scattering by Co atoms substituted for the Fe sites, rather than the so far proposed mechanisms such as the anisotropy of Fermi velocities of reconstructed Fermi surface pockets. As doping proceeds to the paramagnetic-tetragonal phase, a Co impurity transforms to a weak and isotropic scattering center.

5.
Phys Rev Lett ; 111(16): 167002, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182293

RESUMO

Spin fluctuations in superconducting BaFe2(As(1-x)P(x))2 (x=0.34, T(c)=29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at (π, 0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity.

6.
Phys Rev Lett ; 110(10): 107007, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521287

RESUMO

In order to examine to what extent the rigid-band-like electron doping scenario is applicable to the transition metal-substituted Fe-based superconductors, we have performed angle-resolved photoemission spectroscopy studies of Ba(Fe(1-x)Ni(x))(2)As(2) (Ni-122) and Ba(Fe(1-x)Cu(x))(2)As(2) (Cu-122), and compared the results with Ba(Fe(1-x)Co(x))(2)As(2) (Co-122). We find that Ni 3d-derived features are formed below the Fe 3d band and that Cu 3d-derived ones further below it. The electron and hole Fermi surface (FS) volumes are found to increase and decrease with substitution, respectively, qualitatively consistent with the rigid-band model. However, the total extra electron number estimated from the FS volumes (the total electron FS volume minus the total hole FS volume) is found to decrease in going from Co-, Ni-, to Cu-122 for a fixed nominal extra electron number, that is, the number of electrons that participate in the formation of FS decreases with increasing impurity potential. We find that the Néel temperature T(N) and the critical temperature T(c) maximum are determined by the FS volumes rather than the nominal extra electron concentration or the substituted atom concentration.

7.
Phys Rev Lett ; 109(21): 217003, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215609

RESUMO

We investigate the anisotropy in the in-plane optical spectra of detwinned Ba(Fe(1-x)Co(x))(2)As(2). The optical conductivity spectrum of BaFe(2)As(2) shows appreciable anisotropy in the magnetostructural ordered phase, whereas the dc (ω = 0) resistivity is nearly isotropic at low temperatures. Upon Co doping, the resistivity becomes highly anisotropic, while the finite-energy intrinsic anisotropy is suppressed. It is found that anisotropy in resistivity arises from anisotropic impurity scattering due to the presence of doped Co atoms, and it is extrinsic in origin. The intensity of a specific optical phonon mode is also found to show striking anisotropy in the ordered phase. The anisotropy induced by the Co impurity and that observed in the optical phonon mode are hallmarks of the highly polarizable electronic state in the ordered phase.

8.
Phys Rev Lett ; 109(15): 157001, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102353

RESUMO

We report on an (75)As-NMR study on the Fe-pnictide high-T(c) superconductor Y(0.95)La(0.05)FeAsO(1-y) (Y(0.95)La(0.05)1111) with T(c)=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate (75)(1/T(1)) has revealed that the nodeless bulk superconductivity takes place at T(c)=50 K while antiferromagnetic spin fluctuations develop moderately in the normal state. These features are consistently described by the multiple fully gapped s(±)-wave model based on the Fermi-surface nesting. Incorporating the theory based on band calculations, we propose that the reason that T(c)=50 K in Y(0.95)La(0.05)1111 is larger than T(c)=28 K in La1111 is that the Fermi-surface multiplicity is maximized, and hence the Fermi-surface nesting condition is better than that in La1111.

9.
Phys Rev Lett ; 109(8): 087001, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-23002766

RESUMO

The thermal conductivity κ of the iron arsenide superconductor KFe2As2 was measured down to 50 mK for a heat current parallel and perpendicular to the tetragonal c axis. A residual linear term at T→0, κ(0)/T is observed for both current directions, confirming the presence of nodes in the superconducting gap. Our value of κ(0)/T in the plane is equal to that reported by Dong et al. [Phys. Rev. Lett. 104, 087005 (2010)] for a sample whose residual resistivity ρ(0) was 10 times larger. This independence of κ(0)/T on impurity scattering is the signature of universal heat transport, a property of superconducting states with symmetry-imposed line nodes. This argues against an s-wave state with accidental nodes. It favors instead a d-wave state, an assignment consistent with five additional properties: the magnitude of the critical scattering rate Γ(c) for suppressing T(c) to zero; the magnitude of κ(0)/T, and its dependence on current direction and on magnetic field; the temperature dependence of κ(T).

10.
Sci Rep ; 12(1): 19132, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352252

RESUMO

We have investigated the pinning potential of high-quality single crystals of superconducting material CaKFe4As4 having high critical current density and very high upper critical field using both magnetization relaxation measurements and frequency-dependent AC susceptibility. Preliminary studies of the superconducting transition and of the isothermal magnetization loops confirmed the high quality of the samples, while temperature dependence of the AC susceptibility in high magnetic fields show absolutely no dependence on the cooling conditions, hence, no magnetic history. From magnetization relaxation measurements were extracted the values of the normalized pinning potential U*, which reveals a clear crossover between elastic creep and plastic creep. The extremely high values of U*, up to 1200 K around the temperature of 20 K lead to a nearly zero value of the probability of thermally-activated flux jumps at temperatures of interest for high-field applications. The values of the creep exponents in the two creep regimes resulted from the analysis of the magnetization relaxation data are in complete agreement with theoretical models. Pinning potentials were also estimated, near the critical temperature, from AC susceptibility measurements, their values being close to those resulted (at the same temperature and DC field) from the magnetization relaxation data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA