RESUMO
Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.
Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Meduloblastoma/classificação , Meduloblastoma/genética , Sequenciamento Completo do Genoma , Carcinogênese/genética , Proteínas de Transporte/genética , Estudos de Coortes , Metilação de DNA , Conjuntos de Dados como Assunto , Epistasia Genética , Genômica , Humanos , Terapia de Alvo Molecular , Proteínas Musculares/genética , Mutação , Oncogenes/genética , Fatores de Transcrição/genética , Proteínas Wnt/genéticaRESUMO
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Assuntos
Genoma/genética , Centro Germinativo/metabolismo , Linfoma de Células B/genética , Mutação/genética , Adulto , Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Switching de Imunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genéticaRESUMO
Neuroblastoma is the most common extra-cranial solid tumor of early childhood. Standard therapies are not effective in case of poor prognosis and chemotherapy resistance. To improve drug therapy, it is imperative to discover new targets that play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery is an attractive target for therapeutic interventions and inhibitors can be developed to target mitotic entry, spindle apparatus, spindle activation checkpoint, and mitotic exit. We present an elaborate analysis pipeline to determine cancer specific therapeutic targets by first performing a focused gene expression analysis to select genes followed by a gene knockdown screening assay of live cells. We interrogated gene expression studies of neuroblastoma tumors and selected 240 genes relevant for tumorigenesis and cell cycle. With these genes we performed time-lapse screening of gene knockdowns in neuroblastoma cells. We classified cellular phenotypes and used the temporal context of the perturbation effect to determine the sequence of events, particularly the mitotic entry preceding cell death. Based upon this phenotype kinetics from the gene knockdown screening, we inferred dynamic gene functions in mitosis and cell proliferation. We identified six genes (DLGAP5, DSCC1, SMO, SNRPD1, SSBP1, and UBE2C) with a vital role in mitosis and these are promising therapeutic targets for neuroblastoma. Images and movies of every time point of all screened genes are available at https://ichip.bioquant.uni-heidelberg.de.