Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163462

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). Previously, we have shown that combination with anti-TCR/anti-TNF-α antibody-based therapy re-established normoglycemia and increased proteinic arginine-dimethylation in the spleen, yet not in the pancreas. High blood glucose is often associated with elevated formation of advanced glycation end-products (AGEs) which act via their receptor (RAGE). Both anti-TCR and anti-TNF-α are inhibitors of RAGE. The aim of the present work was to investigate potential biochemical changes of anti-TCR/anti-TNF-α therapy in the LEW.1AR1-iddm rat. We determined by stable-isotope dilution gas chromatography-mass spectrometry (GC-MS) the content of free and proteinic AGEs and the Nε-monomethylation of lysine (Lys) residues in proteins of pancreas, kidney, liver, spleen and lymph nodes of normoglycemic control (ngCo, n = 6), acute diabetic (acT1D, n = 6), chronic diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Analyzed biomarkers included Lys and its metabolites Nε-carboxymethyl lysine (CML), furosine and Nε-monomethyl lysine (MML). Other amino acids were also determined. Statistical methods including ANOVA, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate the effects. Most statistical differences between the study groups were observed for spleen, pancreas and kidney, with liver and lymph nodes showing no such differences. In the pancreas, the groups differed with respect to proteinic furosine (p = 0.0289) and free CML (p = 0.0023). In the kidneys, the groups differed with respect to proteinic furosine (p = 0.0076) and CML (p = 0.0270). In the spleen, group differences were found for proteinic furosine (p = 0.0114) and free furosine (p = 0.0368), as well as for proteinic CML (p = 0.0502) and proteinic MML (p = 0.0191). The acT1D rats had lower furosine, CML and MML levels in the spleen than the rats in all other groups. This observation corresponds to the lower citrullination levels previously measured in these rats. PCA revealed diametric associations between PC1 and PC2 for spleen (r = -0.8271, p < 0.0001) compared to pancreas (r = 0.5805, p = 0.0073) and kidney (r = 0.8692, p < 0.0001). These findings underscore the importance of the spleen in this animal model of human T1D. OPLS-DA showed that in total sixteen amino acids differed in the experimental groups.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lisina/análogos & derivados , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Rim/química , Fígado/química , Linfonodos/química , Lisina/análise , Masculino , Pâncreas/química , Ratos , Ratos Endogâmicos Lew , Baço/química
2.
BMC Med ; 18(1): 33, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32106855

RESUMO

BACKGROUND: The cytokine IL-17 is a key player in autoimmune processes, while the cytokine IL-6 is responsible for the chronification of inflammation. However, their roles in type 1 diabetes development are still unknown. METHODS: Therefore, therapies for 5 days with anti-IL-17A or anti-IL-6 in combination with a T cell-specific antibody, anti-TCR, or in a triple combination were initiated immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm (IDDM) rat, a model of human type 1 diabetes. RESULTS: Monotherapies with anti-IL-6 or anti-IL-17 showed no sustained anti-diabetic effects. Only the combination therapy of anti-TCR with anti-IL-6 or anti-IL-17 at starting blood glucose concentrations up to 12 mmol/l restored normoglycaemia. The triple antibody combination therapy was effective even up to very high initial blood glucose concentrations (17 mmol/l). The ß cell mass was raised to values of around 6 mg corresponding to those of normoglycaemic controls. In parallel, the apoptosis rate of ß cells was reduced and the proliferation rate increased as well as the islet immune cell infiltrate was strongly reduced in double and abolished in triple combination therapies. CONCLUSIONS: The anti-TCR combination therapy with anti-IL-17 preferentially raised the ß cell mass as a result of ß cell proliferation while anti-IL-6 strongly reduced ß cell apoptosis and the islet immune cell infiltrate with a modest increase of the ß cell mass only. The triple combination therapy achieved both goals in a complimentary anti-autoimmune and anti-inflammatory action resulting in sustained normoglycaemia with normalized serum C-peptide concentrations.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Interleucina-17/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Indução de Remissão/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew
3.
Amino Acids ; 52(1): 103-110, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832896

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). We determined by GC-MS the extent of asymmetric dimethylation (prADMA) and citrullination (prCit) of L-arginine residues in organ proteins (pr) of normoglycaemic control (ngCo, n = 6), acutely diabetic (acT1D, n = 6), chronically diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Pancreatic prCit and prADMA did not differ between the groups but were correlated (r = 0.728, P = 0.0003, n = 20). acT1D rats had lower prCit levels in spleen and kidney than ngCo rats. cuT1D rats had higher prADMA levels than chT1D rats only in the spleen. Combination therapy re-established normoglycaemia and increased prADMA in the spleen without altering pancreatic prADMA and prCit. Western blotting demonstrated the presence of different prADMA pattern, especially an ≈ 50-kDa prADMA in spleen and pancreas, and an ≈ 25-kDa prADMA in the pancreas only, with the kidney showing only a very faint and small prADMA. Besides the changes in the pancreas during different metabolic states, the spleen may play a stronger role for the recognition of metabolic changes in T1D than thought thus far.


Assuntos
Anticorpos/farmacologia , Arginina/genética , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos/imunologia , Glicemia/genética , Citrulinação/efeitos dos fármacos , Citrulinação/genética , Metilação de DNA/genética , Metilação de DNA/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Humanos , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos de Linfócitos T alfa-beta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Baço/efeitos dos fármacos , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365865

RESUMO

Cannabinoids are known to influence hormone secretion of pancreatic islets via G protein­coupled cannabinoid receptor type 1 and 2 (CB1 and CB2). The present study was designed to further investigate the impact of cannabinoid receptors on the parameters involved in insulin secretion and blood glucose recognition. To this end, CB1 and CB2 receptor knockout mice (10-12 week old, both sexes) were characterised at basal state and compared to wild-type mice. The elimination of cannabinoid receptor signalling resulted in alterations of blood glucose concentrations, body weights and insulin levels. Changes were dependent on the deleted receptor type and on the sex. Analyses at mRNA and protein levels provided evidence for the impact of cannabinoid receptor deficiency on the glucose sensing apparatus in the pancreas. Both receptor knockout mouse lines showed decreased mRNA and protein amounts of glucose transporters Glut1 and Glut2, combined with alterations in immunostaining. In addition, pancreatic glucokinase expression was elevated and immunohistochemical labelling was modified in the pancreatic islets. Taken together, CB1 and CB2 signalling pathways seem to influence glucose sensing in ß-cells by affecting glucose transporters and glucokinase. These alterations were more pronounced in CB2 knockout mice, resulting in higher blood glucose and lower plasma insulin levels.


Assuntos
Glicemia/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Biomarcadores , Feminino , Expressão Gênica , Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Canabinoides/genética
5.
Diabetologia ; 61(3): 641-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185012

RESUMO

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/metabolismo , Biologia de Sistemas/métodos , Doadores de Tecidos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Humanos , Masculino , Pancreatectomia
6.
Kidney Int ; 94(4): 741-755, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935951

RESUMO

Severe ischemia reperfusion injury (IRI) results in rapid complement activation, acute kidney injury and progressive renal fibrosis. Little is known about the roles of the C5aR1 and C5aR2 complement receptors in IRI. In this study C5aR1-/- and C5aR2-/- mice were compared to the wild type in a renal IRI model leading to renal fibrosis. C5a receptor expression, kidney morphology, inflammation, and fibrosis were measured in different mouse strains one, seven and 21 days after IRI. Renal perfusion was evaluated by functional magnetic resonance imaging. Protein abundance and phosphorylation were assessed with high content antibody microarrays and Western blotting. C5aR1 and C5aR2 were increased in damaged tubuli and even more in infiltrating leukocytes after IRI in kidneys of wild-type mice. C5aR1-/- and C5aR2-/- animals developed less IRI-induced inflammation and showed better renal perfusion than wild-type mice following IRI. C5aR2-/- mice, in particular, had enhanced tubular and capillary regeneration with less renal fibrosis. Anti-inflammatory IL-10 and the survival/growth kinase AKT levels were especially high in kidneys of C5aR2-/- mice following IRI. LPS caused bone marrow-derived macrophages from C5aR2-/- mice to release IL-10 and to express the stress response enzyme heme oxygenase-1. Thus, C5aR1 and C5aR2 have overlapping actions in which the kidneys of C5aR2-/- mice regenerate better than those in C5aR1-/- mice following IRI. This is mediated, at least in part, by differential production of IL-10, heme oxygenase-1 and AKT.


Assuntos
Heme Oxigenase-1/metabolismo , Interleucina-10/metabolismo , Túbulos Renais/patologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor da Anafilatoxina C5a/genética , Traumatismo por Reperfusão/genética , Animais , Proliferação de Células/genética , Células Cultivadas , Células Epiteliais , Fibrose , Inflamação/etiologia , Rim/diagnóstico por imagem , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Imagem de Perfusão , Fosforilação , Fatores de Proteção , Receptor da Anafilatoxina C5a/metabolismo , Regeneração/genética , Traumatismo por Reperfusão/complicações , Regulação para Cima
7.
Amino Acids ; 50(7): 799-821, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728915

RESUMO

We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO2-), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N2O3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., UNOxR, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of UNOxR. We determined UNOxR values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined UNOxR values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of UNOxR in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean UNOxR values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults (660) and healthy young men (1500). The intra- and inter-variabilities of UNOxR were of the order of 50% in young and elderly healthy subjects. UNOxR values were lower in black compared to white boys (314 vs. 483, P = 0.007), which is in line with reported lower NO bioavailability in black ethnicity. Mean UNOxR values were lower in DMD (424) compared to healthy (730) children, but they were higher in T1DM children (1192). ISDN (3 × 30 mg) decreased stronger UNOxR compared to PETN (3 × 80 mg) after 1 day (P = 0.046) and after 5 days (P = 0.0016) of oral administration of therapeutically equivalent doses. In healthy young men who ingested NaNO3 (0.1 mmol/kg/d), UNOxR was higher than in those who ingested the same dose of NaCl (1709 vs. 369). In LEW.1AR1-iddm rats, mean UNOxR values were lower than in healthy rats (198 vs. 308) and comparable to those in APOE*3-Leiden.CETP mice (151).


Assuntos
Diabetes Mellitus Tipo 1/urina , Diabetes Mellitus Tipo 2/urina , Rim/metabolismo , Nitratos/urina , Nitritos/urina , Doenças Reumáticas/urina , Animais , Arteriopatias Oclusivas/sangue , Arteriopatias Oclusivas/urina , Anidrases Carbônicas/metabolismo , Bovinos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/urina , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Camundongos , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/urina , Óxido Nítrico/sangue , Ratos , Doenças Reumáticas/sangue
8.
Pediatr Diabetes ; 19(5): 963-971, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29527790

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) develops in distinct stages, before and after disease onset. Whether the natural course translates into different immunologic patterns is still uncertain. This study aimed at identifying peripheral immune patterns at key time-points, in T1D children undergoing remission phase. METHODS: Children with new-onset T1D and healthy age and gender-matched controls were recruited at a pediatric hospital. Peripheral blood samples were evaluated by flow cytometry at 3 longitudinal time-points: onset (T1), remission phase (T2) and established disease (T3). Cytokine levels were quantified by multiplex assay. Fasting C-peptide, HbA1c, and 25OHD were also measured. RESULTS: T1D children (n = 28; 10.0 ± 2.6 years) showed significant differences from controls in circulating neutrophils, T helper (Th)17 and natural killer (NK) cells, with relevant variations during disease progression. At onset, neutrophils, NK, Th17 and T cytotoxic (Tc)17 cells were decreased. As disease progressed, neutrophil counts recovered whereas NK counts remained low. Th17 and Tc17 cells behavior followed the neutrophil variation pattern. B-cells were lowest in the remission phase and regulatory T-cells significantly declined after remission. Two cytokine response profiles were identified. Low cytokine-responders showed higher circulating fasting C-peptide levels at onset and longer remission periods. C-peptide inversely correlated with pro-inflammatory and cytotoxic cells. CONCLUSIONS: Our data suggest an association between immune cells, cytokine patterns and metabolic counterparts. The dynamic changes of circulating immune cells during disease progression involve key innate and acquired immune cell types. This longitudinal picture of T1D progression may enable disease staging and patient stratification, essential for individualized treatment.


Assuntos
Citocinas/sangue , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Peptídeo C/sangue , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/sangue , Progressão da Doença , Feminino , Humanos , Contagem de Leucócitos , Estudos Longitudinais , Masculino
9.
Gastroenterology ; 150(1): 229-241.e5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26404950

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) is a rare disease in infants, with unknown mechanisms of pathogenesis. It is characterized by hepatobiliary inflammatory, progressive destruction of the biliary system leading to liver fibrosis, and deterioration of liver function. Interleukin (IL) 17A promotes inflammatory and autoimmune processes. We studied the role of IL17A and cells that produce this cytokine in a mouse model of BA and in hepatic biopsy samples from infants with BA. METHODS: We obtained peripheral blood and liver tissue specimens from 20 patients with BA, collected at the time of Kasai portoenterostomy, along with liver biopsies from infants without BA (controls). The tissue samples were analyzed by reverse transcription quantitative polymerase chain reaction (PCR), in situ PCR, and flow cytometry analyses. BA was induced in balb/cAnNCrl mice by rhesus rotavirus infection; uninfected mice were used as controls. Liver tissues were collected from mice and analyzed histologically and by reverse transcriptase PCR; leukocytes were isolated, stimulated, and analyzed by flow cytometry and PCR analyses. Some mice were given 3 intraperitoneal injections of a monoclonal antibody against IL17 or an isotype antibody (control). RESULTS: Livers from rhesus rota virus-infected mice with BA had 7-fold more Il17a messenger RNA than control mice (P = .02). γδ T cells were the exclusive source of IL17; no T-helper 17 cells were detected in livers of mice with BA. The increased number of IL17a-positive γδ T cells liver tissues of mice with BA was associated with increased levels of IL17A, IL17F, retinoid-orphan-receptor C, C-C chemokine receptor 6, and the IL23 receptor. Mice that were developing BA and given antibodies against IL17 had lower levels of liver inflammation and mean serum levels of bilirubin than mice receiving control antibodies (191 µmol/L vs 78 µmol/L, P = .002). Liver tissues from patients with BA had 4.6-fold higher levels of IL17 messenger RNA than control liver tissues (P = .02). CONCLUSIONS: In livers of mice with BA, γδ T cells produce IL17, which is required for inflammation and destruction of the biliary system. IL17 is up-regulated in liver tissues from patients with BA, compared with controls, and might serve as a therapeutic target.


Assuntos
Atresia Biliar/metabolismo , Atresia Biliar/patologia , Citocinas/metabolismo , Interleucina-17/metabolismo , Fígado/patologia , Linfócitos T/metabolismo , Animais , Atresia Biliar/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hepatite/patologia , Hepatite/fisiopatologia , Humanos , Imuno-Histoquímica , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Regulação para Cima
10.
Diabetologia ; 59(10): 2125-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460666

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to perform a detailed analysis of cytokine toxicity in the new human EndoC-ßH1 beta cell line. METHODS: The expression profile of the antioxidative enzymes in the new human EndoC-ßH1 beta cells was characterised and compared with that of primary beta cells in the human pancreas. The effects of proinflammatory cytokines on reactive oxygen species formation, insulin secretory responsiveness and apoptosis of EndoC-ßH1 beta cells were determined. RESULTS: EndoC-ßH1 beta cells were sensitive to the toxic action of proinflammatory cytokines. Glucose-dependent stimulation of insulin secretion and an increase in the ATP/ADP ratio was abolished by proinflammatory cytokines without induction of IL-1ß expression. Cytokine-mediated caspase-3 activation was accompanied by reactive oxygen species formation and developed more slowly than in rodent beta cells. Cytokines transiently increased the expression of unfolded protein response genes, without inducing endoplasmic reticulum stress-marker genes. Cytokine-mediated NFκB activation was too weak to induce inducible nitric oxide synthase expression. The resultant lack of nitric oxide generation in EndoC-ßH1 cells, in contrast to rodent beta cells, makes these cells dependent on exogenously generated nitric oxide, which is released from infiltrating immune cells in human type 1 diabetes, for full expression of proinflammatory cytokine toxicity. CONCLUSIONS/INTERPRETATION: EndoC-ßH1 beta cells are characterised by an imbalance between H2O2-generating and -inactivating enzymes, and react to cytokine exposure in a similar manner to primary human beta cells. They are a suitable beta cell surrogate for cytokine-toxicity studies.


Assuntos
Citocinas/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pancrelipase/metabolismo , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo
11.
Diabetologia ; 58(12): 2800-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363782

RESUMO

AIMS/HYPOTHESIS: The LEW.1AR1-iddm rat, an animal model of human type 1 diabetes, arose through a spontaneous mutation within the inbred strain LEW.1AR1. A susceptibility locus (Iddm8) on rat chromosome 1 (RNO1) has been identified previously, which is accompanied by autoimmune diabetes and the additional phenotype of a variable CD3(+) T cell frequency. METHODS: In the present study we characterised the Iddm8 region on RNO1 in backcross strains using the genetically divergent Brown Norway (BN) and Paris (PAR) rats. Candidate genes of the Iddm8 region were sequenced for mutation analysis. RESULTS: The Iddm8 region could be subdivided by single nucleotide polymorphism (SNP) analyses. In the first region, a mutation in exon 44 of the Dock8 gene was identified resulting in an amino acid exchange in the protein from glutamine to glutamate. This exchange is unique for the LEW.1AR1-iddm rat. In the second region, a SNP was detected in exon 11 of the Vwa2 gene with an exchange from arginine to tryptophan. This SNP is also present in other rat strains. CONCLUSIONS/INTERPRETATION: The Dock8 mutation gave rise to a new type 1 diabetes rat model with very close similarity to type 1 diabetes in humans, providing a deepened insight into the impact of genes involved in diabetes development.


Assuntos
Diabetes Mellitus Tipo 1/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Alelos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Éxons/genética , Humanos , Células Matadoras Naturais , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos Lew , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Fator de von Willebrand/genética
12.
Cell Physiol Biochem ; 36(3): 852-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26044490

RESUMO

BACKGROUND/AIMS: Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate ß-cell dysfunction and ß-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. METHODS: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. RESULTS: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. CONCLUSION: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal ß-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.


Assuntos
Peróxido de Hidrogênio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Palmítico/toxicidade , Peroxissomos/efeitos dos fármacos , Animais , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peróxido de Hidrogênio/antagonistas & inibidores , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Masculino , Ácido Palmítico/antagonistas & inibidores , Peroxissomos/metabolismo , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew
13.
Diabetologia ; 57(3): 512-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24310561

RESUMO

AIMS/HYPOTHESIS: Research on the pathogenesis of type 1 diabetes relies heavily on good animal models. The aim of this work was to study the translational value of animal models of type 1 diabetes to the human situation. METHODS: We compared the four major animal models of spontaneous type 1 diabetes, namely the NOD mouse, BioBreeding (BB) rat, Komeda rat and LEW.1AR1-iddm rat, by examining the immunohistochemistry and in situ RT-PCR of immune cell infiltrate and cytokine pattern in pancreatic islets, and by comparing findings with human data. RESULTS: After type 1 diabetes manifestation CD8(+) T cells, CD68(+) macrophages and CD4(+) T cells were observed as the main immune cell types with declining frequency, in infiltrated islets of all diabetic pancreases. IL-1ß and TNF-α were the main proinflammatory cytokines in the immune cell infiltrate in NOD mice, BB rats and LEW.1AR1-iddm rats, as well as in humans. The Komeda rat was the exception, with IFN-γ and TNF-α being the main cytokines. In addition, IL-17 and IL-6 and the anti-inflammatory cytokines IL-4, IL-10 and IL-13 were found in some infiltrating immune cells. Apoptotic as well as proliferating beta cells were observed in infiltrated islets. In healthy pancreases no proinflammatory cytokine expression was observed. CONCLUSIONS/INTERPRETATION: With the exception of the Komeda rat, the animal models mirror very well the situation in humans with type 1 diabetes. Thus animal models of type 1 diabetes can provide meaningful information on the disease processes in the pancreas of patients with type 1 diabetes.


Assuntos
Apoptose , Linfócitos B/patologia , Citocinas/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Ratos , Ratos Endogâmicos BB , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Physiol ; 15: 1394040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606007

RESUMO

Myosin 5c (Myo5c) is a motor protein that is produced in epithelial and glandular tissues, where it plays an important role in secretory processes. Myo5c is composed of two heavy chains, each containing a generic motor domain, an elongated neck domain consisting of a single α-helix with six IQ motifs, each of which binds to a calmodulin (CaM) or a myosin light chain from the EF-hand protein family, a coiled-coil dimer-forming region and a carboxyl-terminal globular tail domain. Although Myo5c is a low duty cycle motor, when two or more Myo5c-heavy meromyosin (HMM) molecules are linked together, they move processively along actin filaments. We describe the purification and functional characterization of human Myo5c-HMM co-produced either with CaM alone or with CaM and the essential and regulatory light chains Myl6 and Myl12b. We describe the extent to which cofilaments of actin and Tpm1.6, Tpm1.8 or Tpm3.1 alter the maximum actin-activated ATPase and motile activity of the recombinant Myo5c constructs. The small allosteric effector pentabromopseudilin (PBP), which is predicted to bind in a groove close to the actin and nucleotide binding site with a calculated ΔG of -18.44 kcal/mol, inhibits the motor function of Myo5c with a half-maximal concentration of 280 nM. Using immunohistochemical staining, we determined the distribution and exact localization of Myo5c in endothelial and endocrine cells from rat and human tissue. Particular high levels of Myo5c were observed in insulin-producing ß-cells located within the pancreatic islets of Langerhans.

15.
Am J Physiol Endocrinol Metab ; 304(10): E1023-34, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23512809

RESUMO

ß-Cell mitochondrial dysfunction as well as proinflammatory cytokines have been suggested to contribute to reduced glucose-stimulated insulin secretion (GSIS) in type 2 diabetes. We recently demonstrated that Cohen diabetic sensitive (CDs) rats fed a high-sucrose, low-copper diet (HSD) developed hyperglycemia and reduced GSIS in association with peri-islet infiltration of fat and interleukin (IL)-1ß-expressing macrophages, whereas CD resistant (CDr) rats remained normoglycemic on HSD. We examined: 1) the correlation between copper concentration in the HSD and progression, prevention, and reversion of hyperglycemia in CDs rats, 2) the relationship between activity of the copper-dependent, respiratory-chain enzyme cytochrome c oxidase (COX), infiltration of fat, IL-1ß-expressing macrophages, and defective GSIS in hyperglycemic CDs rats. CDs and CDr rats were fed HSD or copper-supplemented HSD before and during hyperglycemia development. Blood glucose and insulin concentrations were measured during glucose tolerance tests. Macrophage infiltration and IL-1ß expression were evaluated in pancreatic sections by electron-microscopy and immunostaining. COX activity was measured in pancreatic sections and isolated islets. In CDs rats fed HSD, GSIS and islet COX activity decreased, while blood glucose and infiltration of fat and IL-1ß-expressing macrophages increased with time on HSD (P < 0.01 vs. CDr-HSD rats, all parameters, respectively). CDs rats maintained on copper-supplemented HSD did not develop hyperglycemia, and in hyperglycemic CDs rats, copper supplementation restored GSIS and COX activity, reversed hyperglycemia and infiltration of fat and IL-1ß-expressing macrophages (P < 0.01 vs. hyperglycemic CDs-HSD rats, all parameters, respectively). We provide novel evidence for a critical role of low dietary copper in diminished GSIS of susceptible CDs rats involving the combined consequence of reduced islet COX activity and pancreatic low-grade inflammation.


Assuntos
Cobre/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos não Esterificados/metabolismo , Teste de Tolerância a Glucose , Hiperglicemia/enzimologia , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle , Imuno-Histoquímica , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Interleucina-1beta/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Ratos , Triglicerídeos/metabolismo
16.
Mol Ther ; 20(5): 918-26, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354377

RESUMO

Due to shortage of donor tissue a cure for type 1 diabetes by pancreas organ or islet transplantation is an option only for very few patients. Gene therapy is an alternative approach to cure the disease. Insulin generation in non-endocrine cells through genetic engineering is a promising therapeutic concept to achieve insulin independence in patients with diabetes. In the present study furin-cleavable human insulin was expressed in the liver of autoimmune-diabetic IDDM rats (LEW.1AR1/Ztm-iddm) and streptozotocin-diabetic rats after portal vein injection of INS-lentivirus. Within 5-7 days after the virus injection of 7 × 10(9) INS-lentiviral particles the blood glucose concentrations were normalized in the treated animals. This glucose lowering effect remained stable for the 1 year observation period. Human C-peptide as a marker for hepatic release of human insulin was in the range of 50-100 pmol/ml serum. Immunofluorescence staining of liver tissue was positive for insulin showing no signs of transdifferentiation into pancreatic ß-cells. This study shows that the diabetic state can be efficiently reversed by insulin release from non-endocrine cells through a somatic gene therapy approach.


Assuntos
Diabetes Mellitus Experimental/terapia , Terapia Genética/métodos , Insulina/biossíntese , Lentivirus/genética , Fígado/metabolismo , Animais , Glicemia/análise , Peptídeo C/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Vetores Genéticos , Humanos , Injeções Intravenosas , Insulina/genética , Masculino , Veia Porta , Ratos , Ratos Transgênicos , Estreptozocina
17.
Mol Nutr Food Res ; 67(5): e2200582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629272

RESUMO

SCOPE: Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-ßH1 ß-cells. METHODS AND RESULTS: ß-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION: In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of ß-cell dysfunction and death in the manifestation of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ácidos Graxos não Esterificados/farmacologia , Glucose/farmacologia , Ácidos Graxos/farmacologia
18.
Stem Cell Rev Rep ; 17(6): 2193-2209, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415483

RESUMO

Differentiation of human pluripotent stem cells into insulin-producing stem cell-derived beta cells harbors great potential for research and therapy of diabetes. SOX9 plays a crucial role during development of the pancreas and particularly in the development of insulin-producing cells as SOX9+ cells form the source for NEUROG3+ endocrine progenitor cells. For the purpose of easy monitoring of differentiation efficiencies into pancreatic progenitors and insulin-producing cells, we generated new reporter lines by knocking in a P2A-H-2Kk-F2A-GFP2 reporter gene into the SOX9-locus and a P2A-mCherry reporter gene into the INS-locus mediated by CRISPR/CAS9-technology. The knock-ins enabled co-expression of the endogenous and reporter genes and report on the endogenous gene expression. Furthermore, FACS and MACS enabled the purification of pancreatic progenitors and insulin-producing cells. Using these cell lines, we established a new differentiation protocol geared towards SOX9+ cells to efficiently drive human pluripotent stem cells into glucose-responsive beta cells. Our new protocol offers an alternative route towards stem cell-derived beta cells, pointing out the importance of Wnt/beta-catenin inhibition and the efficacy of EGF for the development of pancreatic progenitors, as well as the significance of 3D culture for the functionality of the generated beta cells.


Assuntos
Células Secretoras de Insulina , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Linhagem Celular , Humanos , Insulina/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166114, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662571

RESUMO

Pro-inflammatory cytokines are crucial mediators of beta-cell destruction in type 1 diabetes mellitus (T1DM). The involvement of ferroptosis as a form of oxidative non-apoptotic cell death in T1DM pathogenesis has not been elucidated so far. Moreover, the role of glutathione peroxidase 4 (GPx4) as an antioxidative enzyme and a major regulator of ferroptosis remains elusive. Assessment of GPx4 expression in different pancreatic islet cell types revealed a predominant expression in beta-cells. Silencing of GPx4 by RNA interference and exposure to tert-butyl hydroperoxide (tert-BHP) caused ferroptosis in rat pancreatic beta-cells as evidenced by non-apoptotic cell death in association with increased lipid peroxidation, disturbed ATP synthesis, reduced GSH content, and GPx4 degradation. GPx4 overexpression as well as the ferroptosis inhibitor ferrostatin-1 effectively attenuated beta-cell death induced by tert-BHP. Notably, beta-cell toxic cytokines did not induce ferroptosis although beta-cells underwent cell death. Inhibition of iNOS by Nω-nitro-L-arginine however led to a massive lipid peroxidation upon exposure to pro-inflammatory cytokines. Hence, nitric oxide produced during pro-inflammatory cytokine action prevents the induction of ferroptosis, thereby favouring apoptosis as a primary cell death mechanism. The extraordinarily high abundance of the phospholipid hydroperoxidase GPx4 in beta-cells in contrast to the very low expression in other islet cell types points to a susceptibility of beta-cells to the accumulation of toxic lipid peroxides. Overall, these data strongly suggest that GPx4 is indispensable for beta-cell function under physiological conditions. On the other hand, our results exclude an involvement of ferroptosis as an alternative beta-cell death mode under pro-inflammatory cytokine attack.


Assuntos
Apoptose , Citocinas/metabolismo , Ferroptose , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Células Secretoras de Insulina/metabolismo , Masculino , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ratos , Ratos Endogâmicos Lew
20.
Free Radic Biol Med ; 174: 135-143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363947

RESUMO

Aquaporin-8 (AQP8) is a peroxiporin, a transmembrane water and hydrogen peroxide (H2O2) transport protein expressed in the mitochondrial and plasma membranes of pancreatic ß-cells. AQP8 protein expression is low under physiological conditions, but it increases after cytokine exposure both, in vitro and in vivo, possibly related to a NF-κB consensus sequence in the promoter. AQP8 knockdown (KD) insulin-producing RINm5F cells are particularly susceptible to cytokine-mediated oxidative stress. Cytokine (a mixture of IL-1ß, TNF-α, and IFN-γ) treated AQP8 KD cells exhibited pronounced sensitivity to reactive oxygen and nitrogen species (ROS and RNS), resulting in a significant loss of ß-cell viability due to enhanced toxicity of the increased concentrations of H2O2 and hydroxyl radicals (●OH) in mitochondria of AQP8 KD cells. This viability loss went along with increased caspase activities, reduced nitrite concentration (representative of nitric oxide (NO●) accumulation) and increased lipid peroxidation. The explanation for the increased toxicity of the proinflammatory cytokines in AQP8 KD cells resides in the fact that efflux of the H2O2 generated during oxidative stress in the ß-cell mitochondria is hampered through the loss of the peroxiporin channels in the mitochondrial membranes of the AQP8 KD cells. The increased proinflammatory cytokine toxicity due to loss of AQP8 expression in the KD ß-cell mitochondria is thus the result of increased rates of apoptosis. This decreased cell viability is caused by increased levels of oxidative stress along with a ferroptosis-mediated cell death component due to decreased NO● generation.


Assuntos
Aquaporinas , Células Secretoras de Insulina , Animais , Citocinas/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA