Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Org Biomol Chem ; 21(48): 9591-9602, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014516

RESUMO

Resveratrol, a polyphenolic compound known for its health benefits but limited by poor water solubility and low bioavailability, represents a valuable substrate for glucosylation by carbohydrate-active enzymes such as glucosyltransferase-SI (GTF-SI). Using quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics simulations, this study reveals the atomic scale dynamics of resveratrol glucosylation by wild-type GTF-SI. This enzyme exhibited an energy barrier of 8.8 kcal mol-1 and an exothermic process, both consistent with experimental data of similar enzymes. We report a concerted and synchronous reaction mechanism for the catalytic step, characterized by an oxocarbenium ion-like transition state, and elucidate a conformational itinerary of the glucosyl moiety (4H3/E3) → [E3]‡ → 4C1, which aligns with the consistent patterns observed across enzymes of the GH13 and GH70 families. A key interaction was observed between Asp477 and the OH group on carbon 6 of the glucosyl moiety, together with a 2.0 kcal mol-1 transition state stabilization by three water molecules within the active site. Comparative insights with the previously studied Q345F SP enzyme system shed light on the unique and common features that govern transglucosylation reactions. Importantly, the calculated activation barriers strongly support the capability of GTF-SI to facilitate resveratrol glucosylation. This study advances our understanding of the transglucosylation reaction and opens up new ways for the glycodiversification of organic compounds such as polyphenols, thus expanding their potential applications in the food, cosmetic, and pharmaceutical industries.


Assuntos
Glucosiltransferases , Streptococcus mutans , Humanos , Resveratrol , Glucosiltransferases/química , Simulação de Dinâmica Molecular , Água
2.
J Chem Inf Model ; 63(1): 270-280, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469738

RESUMO

The l-asparaginase (l-ASNase) enzyme catalyzes the conversion of the non-essential amino acid l-asparagine into l-aspartic acid and ammonia. Importantly, the l-ASNases are used as a key part of the treatment of acute lymphoblastic leukemia (ALL); however, despite their benefits, they trigger severe side effects because they have their origin in bacterial species (Escherichia coli and Erwinia chrysanthemi). Therefore, one way to solve these side effects is the use of l-ASNases with characteristics similar to those of bacterial types, but from different sources. In this sense, Cavia porcellus l-ASNase (CpA) of mammalian origin is a promising enzyme because it possesses similarities with bacterial species. In this work, the hydrolysis reaction for C. porcellus l-asparaginase was studied from an atomistic point of view. The QM/MM methodology was employed to describe the reaction, from which it was found that the conversion mechanism of l-asparagine into l-aspartic acid occurs in four steps. It was identified that the nucleophilic attack and release of the ammonia group is the rate-limiting step of the reaction. In this step, the nucleophile (Thr19) attacks the substrate (ASN) leading to the formation of a covalent intermediate and release of the leaving group (ammonia). The calculated energy barrier is 18.9 kcal mol-1, at the M06-2X+D3(0)/6-311+G(2d,2p)//CHARMM36 level of theory, which is in agreement with the kinetic data available in the literature, 15.9 kcal mol-1 (derived from the kcat value of 38.6 s-1). These catalytic aspects will hopefully pave the way toward enhanced forms of CpA. Finally, our work emphasizes that computational calculations may enhance the rational design of mutations to improve the catalytic properties of the CpA enzyme.


Assuntos
Asparaginase , Asparagina , Animais , Cobaias/metabolismo , Amônia/química , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico , Mamíferos/metabolismo , Mutação
3.
J Chem Inf Model ; 63(4): 1338-1350, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757339

RESUMO

Vildagliptin (VIL) is an antidiabetic drug that inhibits dipeptidyl peptidase-4 (DPP4) through a covalent mechanism. The molecular bases for this inhibitory process have been addressed experimentally and computationally. Nevertheless, relevant issues remain unknown such as the roles of active site protonation states and conserved water molecules nearby the catalytic center. In this work, molecular dynamics simulations were applied to examine the structures of 12 noncovalent VIL-DPP4 complexes encompassing all possible protonation states of three noncatalytic residues (His126, Asp663, Asp709) that were inconclusively predicted by different computational tools. A catalytically competent complex structure was only achieved in the system with His126 in its ε-form and nonconventional neutral states for Asp663/Asp709. This complex suggested the involvement of one water molecule in the catalytic process of His740/Ser630 activation, which was confirmed by QM/MM simulations. Our findings support the suitability of a novel water-mediated mechanism in which His740/Ser630 activation occurs concertedly with the nucleophilic attack on VIL and the imidate protonation by Tyr547. Then, the restoration of His740/ Tyr547 protonation states occurs via a two-water hydrogen bonding network in a low-barrier process, thus describing the final step of the catalytic cycle for the first time. Additionally, two hydrolytic mechanisms were proposed based on the hydrogen bonding networks formed by water molecules and the catalytic residues along the inhibitory mechanism. These findings are valuable to unveil the molecular features of the covalent inhibition of DPP4 by VIL and support the future development of novel derivatives with improved structural or mechanistic profiles.


Assuntos
Dipeptidil Peptidase 4 , Água , Vildagliptina , Domínio Catalítico , Água/química , Simulação de Dinâmica Molecular
4.
Org Biomol Chem ; 20(26): 5270-5283, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35708054

RESUMO

Mainly due to their great antioxidant, anti-inflammatory and anticancer capacities, natural polyphenolic compounds have many properties with important applications in the food, cosmetic and pharmaceutical industries. Unfortunately, these molecules have very low water solubility and bioavailability. Glucosylation of polyphenols is an excellent alternative to overcome these drawbacks. Specifically, for the natural polyphenol resveratrol this process is very inefficiently performed by the native enzyme sucrose phosphorylase (BaSP) from the organism Bifidobacterium adolescentis (4%). However, the Q345F point mutation of the sucrose phosphorylase (BaSP Q345F) has been shown to achieve 97% monoglucosylation for the same substrate and the mechanism is still unknown. This report presents an analysis of MD simulations performed with the BaSP Q345F and BaSP systems in complex with resveratrol monoglucoside, followed by a study of the transglucosylation reaction of the mutant enzyme BaSP Q345F with resveratrol through the QM/MM hybrid method. With respect to the MD simulations, both protein structures showed greater similarity to the phosphate-binding conformation, and a larger active site and conformational changes in certain structures were found for the mutant system compared with the native enzyme; all this is in agreement with experimental data. With regard to the QM/MM calculations, the structure of an oxocarbenium ion-like transition state and the minimum energy adiabatic path (MEP) that connects the reactants with the products were obtained with a 20.3 kcal mol-1 energy barrier, which fits within the known experimental range for this type of enzyme. Finally, the analyses performed along the MEP suggest a concerted but asynchronous mechanism. In particular, they show that the interactions involving the residues of the catalytic triad (Asp192, Glu232, and Asp290) together with two water molecules at the active site strongly contribute to the stabilization of the transition state. The understanding of this glucosylation mechanism of the polyphenol resveratrol carried out by the mutant sucrose phosphorylase enzyme presented in this work could serve as the basis for subsequent studies on related carbohydrate-active enzymes.


Assuntos
Bifidobacterium adolescentis , Domínio Catalítico , Glucosiltransferases , Polifenóis , Resveratrol , Água
5.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742891

RESUMO

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate. A comparison of available crystal structures for arginases reveals an important difference in the extension of two loops located in the entrance of the active site. The first, denominated loop A (I129-L140) contains the residues that interact with the alpha carboxyl group or arginine of arginase, and the loop B (D181-P184) contains the residues that interact with the alpha amino group of arginine. In this work, to determine the importance of these loops in the specificity of arginase, single, double, and triple arginase mutants in these loops were constructed, as well as chimeras between type I human arginase and E. coli agmatinase. In previous studies, the substitution of N130D in arginase (in loop A) generated a species capable of hydrolyzing arginine and agmatine. Now, the specificity of arginase is completely altered, generating a chimeric species that is only active with agmatine as a substrate, by substituting I129T, N130Y, and T131A together with the elimination of residues P132, L133, and T134. In addition, Quantum Mechanic/Molecular Mechanic (QM/MM) calculations were carried out to study the accommodation of the substrates in in the active site of this chimera. With these results it is concluded that this loop is decisive to discriminate the type of substrate susceptible to be hydrolyzed by arginase. Evidence was also obtained to define the loop B as a structural determinant for substrate affinity. Concretely, the double mutation D181T and V182E generate an enzyme with an essentially unaltered kcat value, but with a significantly increased Km value for arginine and a significant decrease in affinity for its product ornithine.


Assuntos
Agmatina , Arginase , Arginase/metabolismo , Arginina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ornitina , Especificidade por Substrato , Ureia
6.
Org Biomol Chem ; 19(26): 5888-5898, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34132308

RESUMO

Glycosyltransferases (GTs) from the GT1 family are responsible for the glycosylation of various important organic structures such as terpenes, steroids and peptide antibiotics, making it one of the most intensely studied families of GTs. The target of our study, LanGT2, is a member of the GT1 family that uses an inverting mechanism for transferring olivose from TDP-olivose, the donor substrate, to the natural product tetrangulol (Tet), the precursor of the antibiotic landomycin A. X-ray crystallography in conjunction with mutagenesis experiments has revealed the catalytic significance of 3 amino acids (Ser10, Ser219 and Asp137), suggesting Asp137 as the base catalyst. In the absence of X-ray structures that include the acceptor substrate Tet, in silico experiments and MD simulations that have modeled ternary complexes propose that Asp137 could recruit a water molecule to facilitate the nucleophilic activation of Tet, since the distance between Asp137 and the nucleophile is too long to directly deprotonate the nucleophilic moiety. So far, there is no computational evidence regarding the precise mechanism by which LanGT2 catalyzes the transfer of olivose, which raises questions such as: is a water-assisted mechanism possible? and how does this metal ion-independent GT stabilize the growing negative charge of the diphosphate leaving group? In this work, the QM/MM approach was used to unravel the catalytic mechanism of LanGT2, and to identify the role of crucial catalytic amino acids at a molecular level. Our calculations show that the minimum energy path (MEP) describes an SN2-like mechanism, identifying an oxocarbenium ion-like TS in which the olivosyl moiety adopts a 4H3 conformation. Interactions established between the diphosphate group of TDP and Ser10, Ser219, Arg220 and His283 are key to stabilize the development of charge on the leaving group. Our work also suggests that a water-mediated proton transfer mechanism is feasible, in which the water molecule is key to stabilize the phenolate ion-like nucleophile in the TS. This is the first computational insight into the inverting mechanism of an antibiotic natural product GT, and its implications may serve to guide the design of new biocatalysts for natural product glycodiversification.


Assuntos
Produtos Biológicos
7.
J Chem Inf Model ; 60(2): 933-943, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31800236

RESUMO

Many bioactive compounds are O-glycosylated metabolites; however, the hydrolytic sensitivity of O-glycosidic linkage limits their therapeutic applications. Enzymatically and chemically stable C-glycosidic bonds are thought of as a potential solution to overcome this problem, although the insufficient information about the structural preferences and interactions that distinguish the C- from the O-glycosylation reactions has hindered the development of enzyme engineering strategies. Thus, in this work, the O-glycosyltransferase LanGT2 (O-LanGT2) and its engineered C-C bond-forming variant (C-LanGT2), which catalyze the initial glycosylation step in the biosynthesis of the antibiotic landomycin A, were studied by means of all-atom Molecular Dynamics simulations. Our results indicate that precise positioning of the acceptor substrate tetrangulol (TET) seems to be determined by the flexibility of the loop 51-62, which gives rise to slightly different secondary structural elements that modulate the interactions between this loop and TET. In O-LanGT2, the most notable interactions between TET and the loop 51-62 involve R59 and A62, whereas in C-LanGT2 they involve A8, I58, and I62. Although A8 is not part of the loop 51-62, it turns out to be key to the binding mode exhibited by TET in C-LanGT2. Thus, the TET-A62 (O-LanGT2) and TET-A8 (C-LanGT2) interactions appear to be critical to accomplish the O- and the C-glycosidic bond specificity, respectively. Finally, all results together shed light on the molecular basis governing the O- and C-bond specificity, revealing that the underlying molecular mechanism that tunes the orientation of TET at its binding pocket involves hydrophobic interactions.


Assuntos
Aminoglicosídeos/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Simulação de Dinâmica Molecular , Mutação , Glicosilação , Glicosiltransferases/genética , Ligação Proteica , Conformação Proteica
8.
J Chem Inf Model ; 60(2): 915-922, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31841000

RESUMO

Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate-dependent enzyme involved in the biosynthesis of valine, leucine, isoleucine, and lysine. Experimental evidence has shown that mutation of the Gln202 residue results in a decrease in the enzymatic activity, thus suggesting the main role of the carboligation catalyzed by AHAS. It has been postulated that this residue acts as an acid/base group, protonating the carbonyl oxygen from the 2-ketoacid substrate, during the carboligation reaction. However, previous studies have revealed that 2-ketoacid is not engaged in catalytically relevant interactions with ionizable groups that can act as an acid/base group during the catalysis. Therefore, it has been proposed that the carboligation reaction could occur through an intramolecular proton transfer without the assistance of an amino acid residue with acid-base properties. To decipher the role of Gln202, in this work, we studied the last two catalytic steps of the AHAS through quantum mechanics/molecular mechanics calculations using a full enzyme model of the wild-type AHAS and the Gln202Ala mutant. Our results indicate that the carboligation mechanism occurs through an intramolecular proton transfer that does not require the action of an additional acid-base group. The mechanism is composed of two steps in which the last one is rate-limiting. Our findings reveal that Gln202 stabilizes a catalytic water molecule in the reactive site through electrostatic contributions that are mostly relevant during the carboligation step, in agreement with experimental evidence. The catalytic water engages in intermolecular hydrogen bonds with the reacting species and makes a strong electronic contribution to the stabilization of the reaction intermediate (AL-ThDP).


Assuntos
Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Biocatálise , Glutamina , Leveduras/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Teoria Quântica
9.
J Chem Inf Model ; 60(6): 3204-3213, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32286822

RESUMO

Microtubules (MT) are cytoskeletal polymers of αß-tubulin dimers that play a critical role in many cellular functions. Diverse antimitotic drugs bind to MT and disrupt their dynamics acting as MT stabilizing or destabilizing agents. The occurrence of undesired side effects and drug resistance encourages the search for novel MT binding agents with chemically diverse structures and different interaction profiles compared to known active compounds. This work reports the rational discovery of seven novel MT stabilizers using a combination of molecular modeling methods and in vitro experimental assays. Virtual screening, similarity filtering, and molecular mechanics generalized Born surface area (MM/GBSA) binding free energy refinement were employed to select seven potential candidates with high predicted affinity toward the non-taxoid site for MT stabilizers on ß-tubulin. MD simulations of 150 ns on reduced MT models suggest that candidate compounds strengthen the longitudinal interactions between tubulin dimers across protofilaments, which is a primary molecular mechanism of action for known MT stabilizers. In vitro MT polymerization assays confirmed that all candidates promote MT assembly at concentrations of >50 mM and exhibit noncompetitive MT polymerization profiles when cotreating with Taxol. Preliminary HeLa cell viability assays revealed a moderate cytotoxic effect for the compounds under study at 100 µM concentration. These results support the validity of our rational discovery strategy and the use of molecular modeling methods to pursue the search and optimization of new MT targeting agents.


Assuntos
Excipientes , Paclitaxel , Células HeLa , Humanos , Microtúbulos , Paclitaxel/farmacologia , Tubulina (Proteína)
10.
Proteins ; 87(1): 74-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367507

RESUMO

Glucansucrase GTF-SI from Streptococcus mutans is a multidomain enzyme that catalyzes the synthesis of glucan polymers. Domain V locates 100 Å from the catalytic site and is required for an optimal activity. Nevertheless, the mechanism governing its functional role remains elusive. In this work, homology modeling and molecular dynamics simulations were employed to examine the effect of domain V in the structure and glucan-binding ability of GTF-SI in full and truncated enzyme models. Our results showed that domain V increases the flexibility of the α4'-loop-α4″ motif near the catalytic site resulting in a higher surface for glucan association, and modulates the orientation of a growing oligosaccharide (N=8-23) in glucan-enzyme complexes towards engaging in favorable contacts throughout the protein, whereas in the truncated model the glucan protrudes randomly from domain B towards the solvent. These results are valuable to increase understanding about the functional role of domain V in GH70 glucansucrases.


Assuntos
Glucanos/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Streptococcus mutans/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
11.
Proteins ; 87(8): 668-678, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30958582

RESUMO

Microtubules (MT) are dynamic cytoskeletal components that play a crucial role in cell division. Disrupting MT dynamics by MT stabilizers is a widely employed strategy to control cell proliferation in cancer therapy. Most MT stabilizers bind to the taxol (TX) site located at the luminal interface between protofilaments, except laulimalide and peloruside A (PLA), which bind to an interfacial pocket on outer MT surface. Cryo-electron microscopy MTs reconstructions have shown differential structural effects on the MT lattice in singly- and doubly-bonded complexes with PLA, TX, and PLA/TX, as PLA is able to revert the lattice heterogeneity induced by TX association leading to more regular MT assemblies. In this work, fully-atomistic molecular dynamics simulations were employed to examine the single and double association of MT stabilizers to reduced MT models in the search for structural and energetic evidence that could be related to the differential regularization and stabilization effects exerted by PLA and TX on the MT lattice. Our results revealed that the double association of PLA/TX (a) strengthens the lateral contact between tubulin dimers compared to singly-bonded complexes, (b) favors a more parallel arrangement between tubulin dimers, and (c) induces a larger restriction in the interdimeric conformational motion increasing the probability of finding structures consistent with 13-protofilaments arrangements. These results and are valuable to increase understanding about the molecular mechanism of action of MT stabilizers, and could account for an overstabilization of MTs in doubly-bonded complexes compared to singly-bonded systems.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Lactonas/farmacologia , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Microtúbulos/química , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Multimerização Proteica/efeitos dos fármacos , Sus scrofa , Tubulina (Proteína)/química
12.
Org Biomol Chem ; 17(25): 6269-6276, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187851

RESUMO

In this work, molecular dynamics and QM/MM calculations were employed to examine the structural and catalytic features of the retaining glucosyltransferase GTF-SI from the GH70 family, which participates in the process of caries formation. Our goal was to obtain a deeper understanding of the role of R475 in the mechanism of sucrose breakage. This residue is highly conserved in the GH70 family and so far there has been no evidence that shows what could be the role of this residue in the catalysis performed by GTF-SI. In order to understand the structural role of R475 in the native enzyme, we built full enzyme models of the wild type and the mutants R475A and R475Q. These models were addressed by means of molecular dynamics simulations, which allowed the assessment of the dynamical effect of the R475 mutation on the active site. Then, representative structures were chosen for each one of the mutant models and QM/MM calculations were carried out to unravel the catalytic role of R475. Our results show that the R475 mutation increases the flexibility of the enzyme, which triggers the entrance of water molecules in the active site. In addition, QM/MM calculations indicate that R475 is able to provide a great stabilization to the carboxylate moiety of the acid/base E515, which is an essential characteristic favoring the proton transfer process that promotes the glycosidic bond breakage of sucrose.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Streptococcus mutans/enzimologia , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Teoria Quântica , Sacarose/química , Sacarose/metabolismo
13.
Org Biomol Chem ; 16(14): 2438-2447, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29557467

RESUMO

In this work, QM/MM calculations were employed to examine the catalytic mechanism of the retaining glucosyltransferase GTF-SI enzyme, which participates in the process of caries formation. Our goal was to characterize, with atomistic details, the mechanism of sucrose hydrolysis and the catalytic factors that modulate this reaction. Our results suggest a concerted mechanism for sucrose hydrolysis in which the first event corresponds to the glycosidic bond breakage assisted by Glu515, followed by the nucleophilic attack of Asp477, leading to the formation of the Covalent Glycosyl Enzyme (CGE) intermediate. A novel conformational itinerary of the glucosyl moiety along the reaction mechanism was identified: 2H3 → 2H3-E3 → 4C1, and the calculated energy barrier is 16.4 kcal mol-1, which is in good agreement with experimental evidence showing a major contribution coming from the glycosidic bond breakage. Our calculations also revealed that Arg475 and Asp588 play a critical role as TS-stabilizers by electrostatic and charge transfer mechanisms, respectively. This is the first report dealing with the specific features of the mechanism and catalytic residues involved in GTF-SI hydrolysis of sucrose, which is a matter of relevance in enzyme catalysis and could be valuable to aid the design of novel and specific inhibitors targeting GTF-SI.


Assuntos
Proteínas de Bactérias/química , Glucosiltransferases/química , Streptococcus mutans/enzimologia , Catálise , Glicosilação , Hidrólise , Modelos Moleculares , Teoria Quântica , Sacarose/química , Termodinâmica
14.
J Comput Aided Mol Des ; 31(7): 643-652, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28597356

RESUMO

Peloruside A (PLA) and Laulimalide (LAU) are novel microtubule-stabilizing agents with promising properties against different cancer types. These ligands share a non-taxoid binding site at the outer surface of ß-tubulin and promote microtubule stabilization by bridging two adjacent αß-tubulin dimers from parallel protofilaments. Recent site-directed mutagenesis experiments confirmed the existence of a unique ß-tubulin site mutation (Gln293Met) that specifically increased the activity of PLA and caused resistance to LAU, without affecting the stability of microtubules in the absence of the ligands. In this work, fully atomistic molecular dynamics simulations were carried out to examine the PLA and LAU association with native and mutated αß-tubulin in the search for structural and energetic evidence to explain the role of Gln293Met mutation on determining the activity of these ligands. Our results revealed that Gln293Met mutation induced the loss of relevant LAU-tubulin contacts but exerted negligible changes in the interaction networks responsible for PLA-tubulin association. Binding free energy calculations (MM/GBSA and MM/PBSA), and weak interaction analysis (aNCI) predicted an increased affinity for PLA, and a weakened association for LAU after mutation, thus suggesting that Gln293Met mutation exerts its action by a modulation of drug-tubulin interactions. These results are valuable to increase understanding about PLA and LAU activity and to assist the future design of novel agents targeting the PLA/LAU binding pocket.


Assuntos
Antineoplásicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Lactonas/química , Macrolídeos/química , Simulação de Dinâmica Molecular , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Sítios de Ligação , Descoberta de Drogas , Humanos , Ligantes , Microtúbulos , Mutação , Ligação Proteica , Software , Termodinâmica
15.
J Chem Inf Model ; 55(8): 1640-4, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26222831

RESUMO

In all ThDP-dependent enzymes, the catalytic cycle is initiated with the attack of the C2 atom of the ylide intermediate on the Cα atom of a pyruvate molecule to form the lactyl-ThDP (L-ThDP) intermediate. In this study, the reaction between the ylide intermediate and pyruvate leading to the formation of L-ThDP is addressed from a theoretical point of view. The study includes molecular dynamics, exploration of the potential energy surface by means of QM/MM calculations, and reactivity analysis on key centers. The results show that the reaction occurs via a concerted mechanism in which the carboligation and the proton transfers occur synchronically. It is also observed that during the reaction the protonation state of the N1' atom changes: the reaction starts with the ylide having the N1' atom deprotonated and reaches a transition state showing the N1' atom protonated. This conversion leads to the reaction path of minimum energy, with an activation energy of about 20 kcal mol(-1). On the other hand, it is also observed that the approaching distance between the pyruvate and the ylide, i.e., the Cα-C2 distance, plays a fundamental role in the reaction mechanism since it determines the nucleophilic character of key atoms of the ylide, which in turn trigger the elemental reactions of the mechanism.


Assuntos
Acetolactato Sintase/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/enzimologia , Tiamina Pirofosfato/análogos & derivados , Acetolactato Sintase/química , Modelos Moleculares , Ácido Pirúvico/química , Teoria Quântica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Termodinâmica , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
16.
J Comput Chem ; 35(6): 488-94, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24395707

RESUMO

The reaction between the intermediate 2-hydroxyethyl-thiamin diphosphate (HEThDP(-) ) and 2-ketobutyrate, in the third step of the catalytic cycle of acetodydroxy acid synthase, is addressed from a theoretical point of view by means of hybrid quantum/molecular mechanical calculations. The QM region includes one molecule of 2-ketobutyrate, the HEThDP(-) intermediate, and the residues Arg 380 y Glu 139; whereas the MM region includes the rest of the protein. The study includes potential energy surface scans to identify and characterize critical points on it, transition state search and activation barrier calculations. The results show that the reaction occurs via a two-step mechanism corresponding to the carboligation and proton transfer in the first stage; and the product release in the second step.


Assuntos
Acetolactato Sintase/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Butiratos/metabolismo , Hidroxibutiratos/metabolismo , Catálise , Teoria Quântica
17.
J Chem Inf Model ; 54(3): 926-32, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24548139

RESUMO

The inhibitory activity of 15 sulfonylureas on acetohydroxyacid synthase (AHAS) is addressed theoretically in order to stress how important the conformation is to explain their differences as AHAS inhibitors. The study includes calculations in gas phase, solution, and in the enzymatic environment. The results suggest that both the activation Gibbs free energy and Gibbs free energy change associated with the conformational change in solution allow for determining if sulfonylureas should have high or low inhibition activity. QM/MM calculations were also carried out in order to identify the role of the amino acid residues and the effects involved in the stabilization of the active conformation in the binding pocket. On the other hand, the analysis of the frontier molecular orbitals of the sulfonylureas in the binding pocket allowed us to explain the inhibitory activity in terms of the reactivity of the carbonyl carbon.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Sítios de Ligação , Conformação Molecular , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/química , Termodinâmica
18.
Int J Mol Sci ; 10(3): 1031-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19399236

RESUMO

The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.


Assuntos
Compostos Orgânicos/química , Solventes/química , Modelos Lineares , Octanóis/química , Relação Quantitativa Estrutura-Atividade , Termodinâmica
19.
Chem Biol Drug Des ; 91(5): 1042-1055, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316292

RESUMO

Laulimalide (LAU) and Peloruside A (PLA) are non-taxane microtubule stabilizing agents with promising antimitotic properties. These ligands promote the assembly of microtubules (MTs) by targeting a unique binding site on ß-tubulin. The X-ray structure for LAU/PLA-tubulin association was recently elucidated, but little information is available regarding the role of these ligands as modulators of interdimeric interactions across MTs. Herein, we report the use of molecular dynamics (MD), principal component analysis (PCA), MM/GBSA-binding free energy calculations, and computational alanine scanning mutagenesis (ASM) to examine effect of LAU/PLA association on lateral and longitudinal contacts between tubulin dimers in reduced MT models. MD and PCA results revealed that LAU/PLA exerts a strong restriction of lateral and longitudinal interdimeric motions, thus enabling the stabilization of the MT lattice. Besides structural effects, LAU/PLA induces a substantial strengthening of longitudinal interdimeric interactions, whereas lateral contacts are less affected by these ligands, as revealed by MM/GBSA and ASM calculations. These results are valuable to increase understanding about the molecular features involved in MT stabilization by LAU/PLA, and to design novel compounds capable of emulating the mode of action of these ligands.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Lactonas/química , Macrolídeos/química , Tubulina (Proteína)/química , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Dimerização , Humanos , Ligação de Hidrogênio , Lactonas/metabolismo , Ligantes , Macrolídeos/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Análise de Componente Principal , Estrutura Terciária de Proteína , Termodinâmica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
20.
J Mol Model ; 19(9): 3799-803, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793740

RESUMO

The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA