Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microsc Microanal ; 24(3): 318-322, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860951

RESUMO

Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

2.
Angew Chem Int Ed Engl ; 57(42): 13868-13872, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30151881

RESUMO

The development of group 15 Lewis acids is an area of active investigation that has led to numerous advances in anion sensing and catalysis. While phosphorus has drawn considerable attention, emerging research shows that organoantimony(III) reagents may also act as potent Lewis acids. Comparison of the properties of SbPh3 , Sb(C6 F5 )3 , and SbArF 3 with those of their tetrachlorocatecholate analogues SbPh3 Cat, Sb(C6 F5 )3 Cat, and SbArF 3 Cat (Cat=o-O2 C6 Cl4 , ArF =3,5-(CF3 )2 C6 H3 ) demonstrates that the Lewis acidity of electron deficient organoantimony(III) reagents can be readily enhanced by oxidation to the +V state-as verified by binding studies, organic reaction catalysis, and computational studies. The results are rationalized by explaining that oxidation of the antimony center leads to a lowering of the accepting σ* orbital and a deeper carving of the associated σ-hole.

3.
Biomacromolecules ; 14(10): 3780-92, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24001031

RESUMO

The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.


Assuntos
Géis/síntese química , Hidrogéis/química , Poloxâmero/química , alfa-Ciclodextrinas/química , Géis/química , Cinética , Estrutura Molecular , Polietilenoglicóis/química , Reologia , Temperatura , Fatores de Tempo , Viscosidade
5.
J Am Chem Soc ; 134(10): 4772-81, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22309892

RESUMO

We present a one-pot synthesis for well-defined nanostructured polymeric microparticles formed from block copolymers that could easily be adapted to commercial scale. We have utilized reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare block copolymers in a dispersion polymerization in supercritical carbon dioxide, an efficient process which uses no additional solvents and hence is environmentally acceptable. We demonstrate that a wide range of monomer types, including methacrylates, acrylamides, and styrenics, can be utilized leading to block copolymer materials that are amphiphilic (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylacrylamide)) and/or mechanically diverse (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylaminoethylmethacrylate)). Interrogation of the internal structure of the microparticles reveals an array of nanoscale morphologies, including multilayered, curved cylindrical, and spherical domains. Surprisingly, control can also be exerted by changing the chemical nature of the constituent blocks and it is clear that selective CO(2) sorption must strongly influence the block copolymer phase behavior, resulting in kinetically trapped morphologies that are different from those conventionally observed for block copolymer thin films formed in absence of CO(2).

6.
J Am Chem Soc ; 134(46): 18920-3, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23126545

RESUMO

Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.


Assuntos
Bismuto/química , Temperatura Alta , Manganês/química , Nanoestruturas , Telúrio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
7.
Langmuir ; 28(45): 15876-88, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23088516

RESUMO

The interactions of block copolymers with surfaces can be controlled by coating those surfaces with appropriate statistical copolymers. Usually, a statistical copolymer comprised of monomer units identical to those of the block copolymer is used; that is, typically a poly(styrene)-stat-poly(methyl methacrylate) (PS-stat-PMMA) is used to direct the alignment of poly(styrene)-block-poly(methyl methacrylate) (PS-block-PMMA), and poly(styrene)-stat-poly(2-vinylpyridine) (PS-stat-P2VP) has been used for poly(styrene)-block-poly(2-vinylpyridine) (PS-block-P2VP). Reports of controlling the orientation of block copolymers with statistical copolymers with a dissimilar composition are limited. Here, we demonstrate that this method can be further extended to show that PS-stat-PMMA can be used to control the wetting properties of poly(styrene)-block-poly(D,L-lactide) (PS-block-PDLA). Surfaces were modified with a series of cross-linked PS-stat-PMMA-stat-glycidyl methacrylate terpolymers, and the surface chemistries and energies were assessed using angle-dependent X-ray photoelectron spectroscopy and the two-liquid harmonic method, respectively. From these experiments, an expected neutral compositional window was identified for symmetrical PS-block-PDLA. Moreover, high-resolution SEM, AD-XPS, and grazing-incidence SAXS measurements were used to evaluate the morphology of PS-block-PDLA as a function of the surface composition of the underlying cross-linked copolymer films, and the neutral composition was found to range from 32 to 38 mol % of PS, in the bulk polymer. Ultimately, we demonstrated the determination of nonpreferential surface compositions that allow the self-assembly of lamellae with sizes in the sub-10 nm regime that are oriented perpendicular to the substrate. These findings have important implications for the use of PS-block-PDLA block copolymers in directed self-assembly, most specifically in advanced lithographic processes.


Assuntos
Poliésteres/química , Poliestirenos/química , Estrutura Molecular , Poliestirenos/síntese química
8.
Biomacromolecules ; 13(11): 3805-13, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23004915

RESUMO

Glycogen, a hyperbranched complex glucose polymer, is an intracellular glucose store that provides energy for cellular functions, with liver glycogen involved in blood-glucose regulation. Liver glycogen comprises complex α particles made up of smaller ß particles. The recent discovery that these α particles are smaller and fewer in diabetic, compared with healthy, mice highlights the need to elucidate the nature of α-particle formation; this paper tests various possibilities for binding within α particles. Acid hydrolysis effects, examined using dynamic light scattering and size exclusion chromatography, showed that the binding is not simple α-(1→4) or α-(1→6) glycosidic linkages. There was no significant change in α particle size after the addition of various reagents, which disrupt disulfide, protein, and hydrogen bonds and hydrophobic interactions. The results are consistent with proteinaceous binding between ß particles in α particles, with the inability of protease to break apart particles being attributed to steric hindrance.


Assuntos
Glicogênio Hepático/química , Proteínas/metabolismo , Animais , Diabetes Mellitus , Dissulfetos/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Glicogênio Hepático/metabolismo , Camundongos , Ligação Proteica , Suínos
9.
Phys Chem Chem Phys ; 14(10): 3604-11, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22314792

RESUMO

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.


Assuntos
Fluorbenzenos/química , Ouro/química , Nanopartículas Metálicas/química
10.
Biomacromolecules ; 12(4): 889-97, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21381703

RESUMO

Phosphorylation of alginate was achieved using a heterogeneous urea/phosphate reaction. The degree and stereoselectivity of phosphorylation as well as the effects on the physical properties of the polysaccharide were investigated by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, inductively coupled plasma optical-emission spectroscopy (ICP-OES), and size exclusion chromatography (SEC). Multidimensional NMR studies of the phosporylated alginate revealed that phosphorylation of the M residues occurred predominantly at the C3 (equatorial) carbon of the polysaccharide ring. In addition, a more comprehensive assignment of the (1)H NMR spectrum of alginate, compared with those previously reported in the literature, is provided here. Hydrogel materials were formed from ionically cross-linked blends of phosphorylated alginate and alginate. These blended hydrogels showed an enhanced resistance to degradation by chelating agents compared with cross-linked alginate hydrogels and a reduction in their mineralization potential.


Assuntos
Alginatos/química , Minerais/química , Alginatos/síntese química , Cromatografia em Gel , Ácido Glucurônico/síntese química , Ácido Glucurônico/química , Ácidos Hexurônicos/síntese química , Ácidos Hexurônicos/química , Espectroscopia de Ressonância Magnética , Fosforilação , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Nat Commun ; 12(1): 52, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397913

RESUMO

Efficient and stable perovskite solar cells with a simple active layer are desirable for manufacturing. Three-dimensional perovskite solar cells are most efficient but need to have improved environmental stability. Inclusion of larger ammonium salts has led to a trade-off between improved stability and efficiency, which is attributed to the perovskite films containing a two-dimensional component. Here, we show that addition of 0.3 mole percent of a fluorinated lead salt into the three-dimensional methylammonium lead iodide perovskite enables low temperature fabrication of simple inverted solar cells with a maximum power conversion efficiency of 21.1%. The perovskite layer has no detectable two-dimensional component at salt concentrations of up to 5 mole percent. The high concentration of fluorinated material found at the film-air interface provides greater hydrophobicity, increased size and orientation of the surface perovskite crystals, and unencapsulated devices with increased stability to high humidity.

12.
Macromol Rapid Commun ; 31(16): 1449-55, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21567550

RESUMO

A series of high-performance polycarbonates have been prepared with glass-transition temperatures and decomposition temperatures that are tunable by varying the repeat-unit chemical structure. Patterning of the polymers with extreme UV lithography has been achieved by taking advantage of direct photoinduced chain scission of the polymer chains, which results in a molecular-weight based solubility switch. After selective development of the irradiated regions of the polymers, feature sizes as small as 28.6 nm have been printed and the importance of resist-developer interactions for maximizing image quality has been demonstrated.

13.
Sci Total Environ ; 649: 739-748, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176484

RESUMO

Hydrogen sulfide is a controlling factor for concrete corrosion in sewers, although its impact on sewer rebar corrosion has not been investigated to date. This study determined the corrosion mechanism of rebar in sewers by elucidating the roles of chloride ions, apart from the effects of hydrogen sulfide and biogenic sulfuric acid. The nature and distribution of rusts at the steel/concrete interface were delineated using the advanced mineral analytical techniques, including mineral liberation analysis and micro X-ray diffraction which is the first-ever use in such studies. The corrosion products were found to be mainly iron oxides or oxy-hydroxides. H2S and biogenic sulfuric acid did not directly participate in the product formation of steel partly covered by concrete or directly exposed to sewer atmosphere. Instead, chloride ions played an important role in initiating steel corrosion in sewers, supported by a thin chloride-enriched layer at the steel/rust interface. Away from the chloride-enriched layer, iron oxides accumulated on both sides of the mill-scale to form a corrosion layer and corrosion-filled paste respectively. The corrosion layer around rebar circumference was non-uniform and the rust thickness with respect to polar coordinates followed a Gaussian model. These findings support predictions of sewer service lifetime and developments of corrosion prevention strategies.

14.
J Phys Chem Lett ; 10(21): 6512-6517, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31597419

RESUMO

We report a comprehensive in-situ phase-change study on polycrystalline Sn0.98Se via high-temperature X-ray diffraction and in-situ high-voltage transmission electron microscopy from room temperature to 843 K. The results clearly demonstrate a continuous phase transition from Pnma to Cmcm starting from 573 to 843 K, rather than a sudden transition at 800 K. We also find that the thermal-conductivity rise at high temperature after the phase transition, as commonly seen in pristine SnSe, does not occur in Sn0.98Se, leading to a high thermoelectric figure of merit. Density functional theory calculations reveal the origin to be the suppression of bipolar thermal conduction in the Cmcm phase of Sn0.98Se due to the enlarged bandgap. This work fills the gap of in-situ characterization on polycrystalline Sn0.98Se and provides new insights into the outstanding thermoelectric performance of polycrystalline Sn0.98Se.

15.
Eur J Pharm Sci ; 33(4-5): 434-44, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18329862

RESUMO

Poly(alkylcyanoacrylate) nanoparticles based on microemulsions with different structure-types and containing insulin as a model protein were prepared and characterised in this study. A phase diagram of the pseudoternary system isopropyl myristate, caprylocaproyl macrogolglycerides, polyglycerol oleate and water was established. All compounds used in this study were pharmaceutically acceptable and biocompatible. The area in the phase diagram containing optically isotropic, monophasic systems was designated as the microemulsion region. Systems within this region were identified as water-in-oil (w/o), bicontinuous and oil-in-water (o/w) microemulsions with viscosity, conductivity, differential scanning calorimetry and self-diffusion NMR. The size distributions of the resulting nanoparticles prepared by interfacial polymerisation from selected microemulsions using ethyl (2) cyanoacrylate and butyl (2) cyanoacrylate were unimodal but template- and monomer-dependent and ranged from 160 to 400 nm. Entrapment and release of insulin were also studied. Entrapment ranged from 11.5 to 20.9% and a near zero-order release was observed after an initial burst. Release of insulin was monitored for 6h. Insulin-loaded nanoparticles were 320-350 nm in size. The microemulsion-structure was retained during the polymerisation process as determined by NMR. This study showed that these microemulsions with flexible formulation possibilities for the solubilisation of peptides and proteins depending on their microstructure could serve well as a platform for designing encapsulation processes for oral delivery of insulin.


Assuntos
Cianoacrilatos , Portadores de Fármacos , Nanopartículas , Proteínas/administração & dosagem , Varredura Diferencial de Calorimetria , Cianoacrilatos/administração & dosagem , Cianoacrilatos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Condutividade Elétrica , Emulsões , Insulina/administração & dosagem , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície , Viscosidade
16.
Nanoscale ; 10(15): 7270-7280, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29632934

RESUMO

Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.


Assuntos
Meios de Contraste , Gadolínio/química , Imageamento por Ressonância Magnética , Polímeros/química , Compostos de Tungstênio/química , Linhagem Celular Tumoral , Gadolínio DTPA , Humanos
17.
J Biotechnol ; 129(3): 489-97, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17368850

RESUMO

One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a simple and cheap carbon source, contributing considerably to the growing research body on bacterial PHA production by mixed cultures.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Biotecnologia/métodos , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Acetatos/metabolismo , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Glicogênio/metabolismo
18.
Biomaterials ; 27(27): 4715-25, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16750849

RESUMO

This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Poliésteres/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular , Mediadores da Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
19.
Food Chem ; 206: 92-101, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27041303

RESUMO

This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities.


Assuntos
Dióxido de Carbono/química , alfa-Ciclodextrinas/química , Cristalização , Espectroscopia de Ressonância Magnética , Pós , Água
20.
J Mater Chem B ; 4(3): 409-421, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263206

RESUMO

The dispersion behaviour of hydroxyapatite nanoparticles (HAP) and surface-modified HAP was studied in 1,4-dioxane (DO), water and poly(ε-caprolactone) (PCL) solutions and the relationship between these and the dispersion in composite PCL scaffolds prepared by thermally induced phase separation (TIPS) was examined. Investigation of the change in particle sizes by dynamic light scattering, showed that the modification of HAP by adsorption or covalent attachment of heparin via a 3-aminopropyltriethoxysilane (APTES) layer improved the dispersion stability of the particles in water/DO mixtures, while no improvement was observed in DO. The distribution of the particles within the composite scaffolds was determined using a combination of transmission electron microscopy and a calcium quantification method which was used to determine distribution of the particles in the vertical direction. While the scaffolds fabricated in DO had particles embedded within the walls of the scaffold, the scaffolds fabricated in a DO/water mixed solvent showed the particles partitioned to the surface of the scaffold walls, which is likely because the particles acted as interface stabilisers and were not miscible with the PCL rich phase. Therefore, it can be concluded that the polymer-solvent system used, as well as the phase separation mechanism that occurs, significantly influences the distribution of the particles in the scaffolds and thus the particle behaviour in solution is not necessarily a good predictor for the ability to fabricate scaffolds with a high degree of particle dispersion and hence for overall materials performance. Bulk crystallinity and compressive modulus were examined and it was determined that no significant changes occurred compared with the pristine PCL, while the surface bioactivity of the scaffolds had improved significantly, indicating that the particles were present at the polymer-solution interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA