Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomacromolecules ; 14(10): 3780-92, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24001031

RESUMO

The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.


Assuntos
Géis/síntese química , Hidrogéis/química , Poloxâmero/química , alfa-Ciclodextrinas/química , Géis/química , Cinética , Estrutura Molecular , Polietilenoglicóis/química , Reologia , Temperatura , Fatores de Tempo , Viscosidade
2.
J Am Chem Soc ; 134(10): 4772-81, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22309892

RESUMO

We present a one-pot synthesis for well-defined nanostructured polymeric microparticles formed from block copolymers that could easily be adapted to commercial scale. We have utilized reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare block copolymers in a dispersion polymerization in supercritical carbon dioxide, an efficient process which uses no additional solvents and hence is environmentally acceptable. We demonstrate that a wide range of monomer types, including methacrylates, acrylamides, and styrenics, can be utilized leading to block copolymer materials that are amphiphilic (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylacrylamide)) and/or mechanically diverse (e.g., poly(methyl methacrylate)-b-poly(N,N-dimethylaminoethylmethacrylate)). Interrogation of the internal structure of the microparticles reveals an array of nanoscale morphologies, including multilayered, curved cylindrical, and spherical domains. Surprisingly, control can also be exerted by changing the chemical nature of the constituent blocks and it is clear that selective CO(2) sorption must strongly influence the block copolymer phase behavior, resulting in kinetically trapped morphologies that are different from those conventionally observed for block copolymer thin films formed in absence of CO(2).

3.
Langmuir ; 28(45): 15876-88, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23088516

RESUMO

The interactions of block copolymers with surfaces can be controlled by coating those surfaces with appropriate statistical copolymers. Usually, a statistical copolymer comprised of monomer units identical to those of the block copolymer is used; that is, typically a poly(styrene)-stat-poly(methyl methacrylate) (PS-stat-PMMA) is used to direct the alignment of poly(styrene)-block-poly(methyl methacrylate) (PS-block-PMMA), and poly(styrene)-stat-poly(2-vinylpyridine) (PS-stat-P2VP) has been used for poly(styrene)-block-poly(2-vinylpyridine) (PS-block-P2VP). Reports of controlling the orientation of block copolymers with statistical copolymers with a dissimilar composition are limited. Here, we demonstrate that this method can be further extended to show that PS-stat-PMMA can be used to control the wetting properties of poly(styrene)-block-poly(D,L-lactide) (PS-block-PDLA). Surfaces were modified with a series of cross-linked PS-stat-PMMA-stat-glycidyl methacrylate terpolymers, and the surface chemistries and energies were assessed using angle-dependent X-ray photoelectron spectroscopy and the two-liquid harmonic method, respectively. From these experiments, an expected neutral compositional window was identified for symmetrical PS-block-PDLA. Moreover, high-resolution SEM, AD-XPS, and grazing-incidence SAXS measurements were used to evaluate the morphology of PS-block-PDLA as a function of the surface composition of the underlying cross-linked copolymer films, and the neutral composition was found to range from 32 to 38 mol % of PS, in the bulk polymer. Ultimately, we demonstrated the determination of nonpreferential surface compositions that allow the self-assembly of lamellae with sizes in the sub-10 nm regime that are oriented perpendicular to the substrate. These findings have important implications for the use of PS-block-PDLA block copolymers in directed self-assembly, most specifically in advanced lithographic processes.


Assuntos
Poliésteres/química , Poliestirenos/química , Estrutura Molecular , Poliestirenos/síntese química
4.
Phys Chem Chem Phys ; 14(10): 3604-11, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22314792

RESUMO

Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.


Assuntos
Fluorbenzenos/química , Ouro/química , Nanopartículas Metálicas/química
5.
Biomacromolecules ; 12(4): 889-97, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21381703

RESUMO

Phosphorylation of alginate was achieved using a heterogeneous urea/phosphate reaction. The degree and stereoselectivity of phosphorylation as well as the effects on the physical properties of the polysaccharide were investigated by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, inductively coupled plasma optical-emission spectroscopy (ICP-OES), and size exclusion chromatography (SEC). Multidimensional NMR studies of the phosporylated alginate revealed that phosphorylation of the M residues occurred predominantly at the C3 (equatorial) carbon of the polysaccharide ring. In addition, a more comprehensive assignment of the (1)H NMR spectrum of alginate, compared with those previously reported in the literature, is provided here. Hydrogel materials were formed from ionically cross-linked blends of phosphorylated alginate and alginate. These blended hydrogels showed an enhanced resistance to degradation by chelating agents compared with cross-linked alginate hydrogels and a reduction in their mineralization potential.


Assuntos
Alginatos/química , Minerais/química , Alginatos/síntese química , Cromatografia em Gel , Ácido Glucurônico/síntese química , Ácido Glucurônico/química , Ácidos Hexurônicos/síntese química , Ácidos Hexurônicos/química , Espectroscopia de Ressonância Magnética , Fosforilação , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Macromol Rapid Commun ; 31(16): 1449-55, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21567550

RESUMO

A series of high-performance polycarbonates have been prepared with glass-transition temperatures and decomposition temperatures that are tunable by varying the repeat-unit chemical structure. Patterning of the polymers with extreme UV lithography has been achieved by taking advantage of direct photoinduced chain scission of the polymer chains, which results in a molecular-weight based solubility switch. After selective development of the irradiated regions of the polymers, feature sizes as small as 28.6 nm have been printed and the importance of resist-developer interactions for maximizing image quality has been demonstrated.

7.
Eur J Pharm Sci ; 33(4-5): 434-44, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18329862

RESUMO

Poly(alkylcyanoacrylate) nanoparticles based on microemulsions with different structure-types and containing insulin as a model protein were prepared and characterised in this study. A phase diagram of the pseudoternary system isopropyl myristate, caprylocaproyl macrogolglycerides, polyglycerol oleate and water was established. All compounds used in this study were pharmaceutically acceptable and biocompatible. The area in the phase diagram containing optically isotropic, monophasic systems was designated as the microemulsion region. Systems within this region were identified as water-in-oil (w/o), bicontinuous and oil-in-water (o/w) microemulsions with viscosity, conductivity, differential scanning calorimetry and self-diffusion NMR. The size distributions of the resulting nanoparticles prepared by interfacial polymerisation from selected microemulsions using ethyl (2) cyanoacrylate and butyl (2) cyanoacrylate were unimodal but template- and monomer-dependent and ranged from 160 to 400 nm. Entrapment and release of insulin were also studied. Entrapment ranged from 11.5 to 20.9% and a near zero-order release was observed after an initial burst. Release of insulin was monitored for 6h. Insulin-loaded nanoparticles were 320-350 nm in size. The microemulsion-structure was retained during the polymerisation process as determined by NMR. This study showed that these microemulsions with flexible formulation possibilities for the solubilisation of peptides and proteins depending on their microstructure could serve well as a platform for designing encapsulation processes for oral delivery of insulin.


Assuntos
Cianoacrilatos , Portadores de Fármacos , Nanopartículas , Proteínas/administração & dosagem , Varredura Diferencial de Calorimetria , Cianoacrilatos/administração & dosagem , Cianoacrilatos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Condutividade Elétrica , Emulsões , Insulina/administração & dosagem , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície , Viscosidade
8.
Nanoscale ; 10(15): 7270-7280, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29632934

RESUMO

Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.


Assuntos
Meios de Contraste , Gadolínio/química , Imageamento por Ressonância Magnética , Polímeros/química , Compostos de Tungstênio/química , Linhagem Celular Tumoral , Gadolínio DTPA , Humanos
9.
Biomaterials ; 27(27): 4715-25, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16750849

RESUMO

This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Poliésteres/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular , Mediadores da Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
10.
Food Chem ; 206: 92-101, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27041303

RESUMO

This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities.


Assuntos
Dióxido de Carbono/química , alfa-Ciclodextrinas/química , Cristalização , Espectroscopia de Ressonância Magnética , Pós , Água
11.
J Mater Chem B ; 4(3): 409-421, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263206

RESUMO

The dispersion behaviour of hydroxyapatite nanoparticles (HAP) and surface-modified HAP was studied in 1,4-dioxane (DO), water and poly(ε-caprolactone) (PCL) solutions and the relationship between these and the dispersion in composite PCL scaffolds prepared by thermally induced phase separation (TIPS) was examined. Investigation of the change in particle sizes by dynamic light scattering, showed that the modification of HAP by adsorption or covalent attachment of heparin via a 3-aminopropyltriethoxysilane (APTES) layer improved the dispersion stability of the particles in water/DO mixtures, while no improvement was observed in DO. The distribution of the particles within the composite scaffolds was determined using a combination of transmission electron microscopy and a calcium quantification method which was used to determine distribution of the particles in the vertical direction. While the scaffolds fabricated in DO had particles embedded within the walls of the scaffold, the scaffolds fabricated in a DO/water mixed solvent showed the particles partitioned to the surface of the scaffold walls, which is likely because the particles acted as interface stabilisers and were not miscible with the PCL rich phase. Therefore, it can be concluded that the polymer-solvent system used, as well as the phase separation mechanism that occurs, significantly influences the distribution of the particles in the scaffolds and thus the particle behaviour in solution is not necessarily a good predictor for the ability to fabricate scaffolds with a high degree of particle dispersion and hence for overall materials performance. Bulk crystallinity and compressive modulus were examined and it was determined that no significant changes occurred compared with the pristine PCL, while the surface bioactivity of the scaffolds had improved significantly, indicating that the particles were present at the polymer-solution interface.

12.
Mater Sci Eng C Mater Biol Appl ; 61: 674-80, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838896

RESUMO

Layered silicate nanoparticles (LSN) are widely used in industrial applications and consumer products. They also have potential benefits in biomedical applications such as implantable devices and for drug delivery. To study how nanomaterials interact with cells and tissues, techniques to track and quantify their movement through different biological compartments are essential. While radiolabels can be very sensitive, particularly for in vivo studies, fluorescent labeling has been preferred in recent years because of the array of methods available to image and quantify fluorescent nanoparticles. However, labeling can be problematic, especially if it alters the physical properties of the nanomaterial. Herein is described a novel non-covalent labeling technique for LSN using readily available fluorescent dimeric cyanine dyes without the need to use excess amounts of dye to achieve labeling, or the need for removal of unbound dye. The approach utilizes the cationic binding properties of layered silicate clays and the multiple quaternary nitrogens associated with the dyes. Preparation of YOYO-1 labeled LSN with optimal dispersion in aqueous media is presented. The utilization of the labeled particles is then demonstrated in cell binding and uptake studies using flow cytometry and confocal microscopy. The labeled LSN are highly fluorescent, stable and exhibit identical physical properties with respect to the unlabeled nanoparticles. The general approach described here is applicable to other cyanine dyes and may be utilized more widely for labeling nanoparticles that comprise a crystalline plate structure with a high binding capacity.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Benzoxazóis/química , Linhagem Celular , Células HeLa , Humanos , Microscopia Confocal , Nanopartículas/metabolismo , Compostos de Quinolínio/química , Silicatos
13.
Biointerphases ; 10(4): 04A308, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26474791

RESUMO

Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active.


Assuntos
Adsorção , Proteína Morfogenética Óssea 2/metabolismo , Liberação Controlada de Fármacos , Durapatita/química , Heparina/metabolismo , Nanopartículas/química , Ligação Proteica , Animais , Proteína Morfogenética Óssea 2/farmacocinética , Microanálise por Sonda Eletrônica , Humanos , Espectroscopia Fotoeletrônica , Suínos , Fatores de Tempo
14.
J Mater Chem B ; 1(42): 5842-5852, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261241

RESUMO

Nano-sized hydroxyapatite (HAP) is of interest in biomaterials science due to its similarity to bone mineral. In this study, HAP modification using 3-aminopropyltriethoxysilane (APTES) was carried out in toluene and the effect of reaction time and curing temperature on the surface layers formed was investigated through X-ray photoelectron spectroscopy, Fourier transform infrared (FT-IR) and solid-state nuclear magnetic resonance (NMR) spectroscopy. It is shown that the chemical composition is strongly influenced by the curing temperature; with low temperatures of 50 and 100 °C resulting in a fully condensed APTES layer, an intermediate temperature of 150 °C causing partial oxidation of the surface layer with the conversion of some amine functionality to amides while curing at a temperature of 200 °C additionally leads to thermal decomposition of the silane layer and a loss of the pendent amine groups. However, the stability of these particles in aqueous solution indicated a loss of the silane layer for samples cured at 150 °C or less and it is concluded that there is a trade-off between the availability of functionality for further chemical grafting and the stability for these APTES-modified HAP materials. Subsequent attachment of the polyelectrolyte poly(acrylic acid) (PAA) via both ionic interaction and covalent bonding using carbodiimide chemistry resulted in particles with more negative zeta potentials (-27 to -18 mV) compared to pure HAP, which were stable to dispersion in aqueous solution, both with respect to their chemical composition at the particle surface and to aggregation.

15.
J Colloid Interface Sci ; 409: 72-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978291

RESUMO

Understanding the nature of mixed surfactant self-assembly on the surface of organoclays is an important step toward optimizing their performance in polymer nanocomposites and for other potential applications, where selective surface interactions are crucial. In segmented thermoplastic polyurethane nanocomposite systems, dual-modified organoclays have shown significantly better performance compared to their single-modified counterparts. Until now, we had not fully characterized the physical chemistry of these dual-modified layered silicates, but had hypothesized that the enhanced composite performance arises due to some degree of nanoscale phase separation on the nanofiller surface, which enables enhanced compatibilization and more specific and inclusive interactions with the nanoscale hard and soft domains in these thermoplastic elastomers. This work examines the organization of quaternary alkyl ammonium compounds on the surface of Lucentite SWN using X-ray diffraction (XRD), thermogravimetric analysis (TGA), attenuated total reflectance Fourier-transfer infrared (ATR FT-IR), (13)C cross-polarization (CP)/magic angle spinning (MAS) nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS). When used in combination with choline, dimethyldioctadecylammonium (DMDO) was observed to self-assemble into discontinuous hydrophobic domains. The inner part of these hydrophobic domains was essentially unaffected by the choline (CC); however, surfactant intermixing was observed either at the periphery or throughout the choline-rich phase surrounding those domains.


Assuntos
Colina/química , Compostos de Amônio Quaternário/química , Silicatos/síntese química , Silicatos/química , Propriedades de Superfície
16.
Biomed Mater ; 4(1): 015003, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18981546

RESUMO

Nano-sized hydroxyapatite (HA) particles stabilized using poly(acrylic acid) (PAA) as a dispersing agent, and sonic energy to further increase dispersion, were blended with poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using a precipitation/gelation method to produce HA/PHBV nanocomposites with up to 16% by weight of HA content. The level of HA nanoparticle dispersion was monitored in the precursor dispersions prior to composite production and in the nanocomposites by a range of techniques including visual observation, turbidity measurements and electron microscopy, and the roles of the dispersing agent and the sonic energy in controlling the dispersion of HA particles in both the precursor dispersions and the final composites as well as their effects on the compressive strength and Young's modulus were investigated. It was found that HA suspensions treated with both PAA and sonic energy possessed significantly better colloidal stability compared to untreated suspensions or suspensions treated with either PAA or sonic energy. This, in turn, resulted in better dispersion of HA nanoparticles in the composites and higher compressive moduli as a function of the particle loading. This enhancement in stiffness of the composites was attributed primarily to the increased surface area of the HA filler in the more highly dispersed samples, but also to an observed increase in the crystalline content achievable after annealing of the samples. It is proposed that this increase in crystallinity is due to the more highly dispersed particles acting as nucleation sites for the crystallization of the PHBV at the particle interface, which, in turn, leads to enhancement of the bonding between the matrix and filler.


Assuntos
Coloides/química , Cristalização/métodos , Durapatita/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliésteres/química , Força Compressiva , Módulo de Elasticidade , Teste de Materiais , Tamanho da Partícula , Viscosidade
17.
Acta Biomater ; 5(7): 2657-67, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19375396

RESUMO

This study reports the fabrication and characterization of nano-sized hydroxyapatite (HA)/poly(hydroxyabutyrate-co-hydroxyvalerate) (PHBV) polymer composite scaffolds with high porosity and controlled pore architectures. These scaffolds were prepared using a modified thermally induced phase-separation technique. This investigation focuses on the effect of fabrication conditions on the overall pore architecture of the scaffolds and the dispersion of HA nanocrystals within the composite scaffolds. The morphologies, mechanical properties and in vitro bioactivity of the composite scaffolds were investigated. It was noted that the pore architectures could be manipulated by varying phase-separation parameters. The HA particles were dispersed in the pore walls of the scaffolds and were well bonded to the polymer. The introduction of HA greatly increased the stiffness and strength, and improved the in vitro bioactivity of the scaffolds. The results suggest these newly developed nano-HA/PHBV composite scaffolds may serve as an effective three-dimensional substrate in bone tissue engineering.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Líquidos Corporais/química , Durapatita/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliésteres/química , Absorção , Cristalização/métodos , Módulo de Elasticidade , Dureza , Teste de Materiais , Tamanho da Partícula , Porosidade , Propriedades de Superfície
18.
Langmuir ; 23(24): 12233-42, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17963411

RESUMO

The surface properties (nature, strength, and stability of interaction of functional groups) and bulk morphologies of a series of amino-acid-functionalized carbonate-containing hydroxyapatite (CHA) particles were investigated. It was found that the amino acids were both occluded in and presented on the surface of the CHA particles. Furthermore, their presence enhanced particle colloidal stability by retardation of Ostwald ripening and in some cases increasing the magnitude of the zeta-potential. Measurements of adsorption isotherms and zeta-potential titrations have shown that the amino-acid-surface interactions are weak and reversible at pH 9 and consistent with a model in which the carboxyl terminus interacts with calcium ions in the CHA lattice. Complexities in adsorption behavior are discussed in terms of different adsorption mechanisms that may be prevalent at different pHs.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Carbonatos/química , Durapatita/química , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Difração de Raios X
19.
Langmuir ; 21(21): 9733-40, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16207060

RESUMO

Thiol-functionalized organosilica microspheres were synthesized via a two-step process: (1) acid-catalyzed hydrolysis and condensation of 3-mercaptopropyltrimethoxysilane (MPTMS), followed by (2) base-catalyzed condensation, which led to the rapid formation of emulsion droplets with a narrow size distribution. These droplets continued to condense to form solid microspheres. Solution (29)Si NMR and optical microscopy were applied to study the mechanism of this novel synthetic route. Solid-state (29)Si NMR, SEM, zeta potential titration, and Coulter counter measurements were used to study the bulk and surface properties and to determine the particle size distributions of the final microspheres. Compared to conventional Stöber silica particles, these microspheres were shown to have a lower degree of cross-linking (average degree of condensation, r = 1.25), a larger average size (up to 6 microm), and a higher isoelectric point (pH = 4.4). Confocal microscopy of dye-labeled microspheres showed an even distribution of dye molecules throughout the interior, characteristic of a readily accessible and permeable organosilica network. These findings have implications for the production of functionalized solid supports for use in catalysis and biological applications, such as optically encoded carriers for combinatorial synthesis.


Assuntos
Emulsões , Compostos Orgânicos/química , Dióxido de Silício , Corantes/química , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microesferas , Potenciometria , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA