Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chembiochem ; 24(24): e202300515, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37807669

RESUMO

NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Nucleossomos , Linhagem Celular Tumoral , Metilação
2.
J Biol Chem ; 294(35): 13106-13116, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308176

RESUMO

Forkhead box protein O1 (FOXO1) is a transcription factor involved in various cellular processes such as glucose metabolism, development, stress resistance, and tumor suppression. FOXO1's transcriptional activity is controlled by different environmental cues through a myriad of posttranslational modifications. In response to growth factors, the serine/threonine kinase AKT phosphorylates Thr24 and Ser256 in FOXO1 to stimulate binding of 14-3-3 proteins, causing FOXO1 inactivation. In contrast, low nutrient and energy levels induce FOXO1 activity. AMP-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, partly mediates this effect through phosphorylation of Ser383 and Thr649 in FOXO1. In this study, we identified Ser22 as an additional AMPK phosphorylation site in FOXO1's N terminus, with Ser22 phosphorylation preventing binding of 14-3-3 proteins. The crystal structure of a FOXO1 peptide in complex with 14-3-3 σ at 2.3 Å resolution revealed that this is a consequence of both steric hindrance and electrostatic repulsion. Furthermore, we found that AMPK-mediated Ser22 phosphorylation impairs Thr24 phosphorylation by AKT in a hierarchical manner. Thus, numerous mechanisms maintain FOXO1 activity via AMPK signaling. AMPK-mediated Ser22 phosphorylation directly and indirectly averts binding of 14-3-3 proteins, whereas phosphorylation of Ser383 and Thr649 complementarily stimulates FOXO1 activity. Our results shed light on a mechanism that integrates inputs from both AMPK and AKT signaling pathways in a small motif to fine-tune FOXO1 transcriptional activity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas 14-3-3/química , Células Cultivadas , Proteína Forkhead Box O1/química , Proteína Forkhead Box O1/genética , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Transdução de Sinais
3.
Bioorg Med Chem ; 27(19): 115043, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420255

RESUMO

High-throughput screening of small-molecule libraries has led to the identification of thiadiazoles as a new class of inhibitors against Staphylococcus aureus sortase A (SrtA). N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)nicotinamide (IC50 = 3.8 µM) was identified as a potent inhibitor of SrtA after synthetic modification of hit compounds. Additional ligands developed in this study displayed affinities in the low micromolar range without affecting bacterial growth in vitro. The study also suggest a new mode of action through covalent binding to the active site cysteine.


Assuntos
Aminoaciltransferases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Staphylococcus aureus/enzimologia , Tiadiazóis/farmacologia , Aminoaciltransferases/química , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/metabolismo
4.
J Biol Chem ; 287(21): 17040-17049, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22451670

RESUMO

In a recent study we described the second periplasmic loop P2 of the transmembrane protein MalF (MalF-P2) of the maltose ATP-binding cassette transporter (MalFGK(2)-E) as an important element in the recognition of substrate by the maltose-binding protein MalE. In this study, we focus on MalE and find that MalE undergoes a structural rearrangement after addition of MalF-P2. Analysis of residual dipolar couplings (RDCs) shows that binding of MalF-P2 induces a semiopen state of MalE in the presence and absence of maltose, whereas maltose is retained in the binding pocket. These data are in agreement with paramagnetic relaxation enhancement experiments. After addition of MalF-P2, an increased solvent accessibility for residues in the vicinity of the maltose-binding site of MalE is observed. MalF-P2 is thus not only responsible for substrate recognition, but also directly involved in activation of substrate transport. The observation that substrate-bound and substrate-free MalE in the presence of MalF-P2 adopts a similar semiopen state hints at the origin of the futile ATP hydrolysis of MalFGK(2)-E.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Transporte Biológico Ativo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Maltose/química , Maltose/genética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Estrutura Secundária de Proteína , Especificidade por Substrato
5.
J Am Chem Soc ; 135(50): 18884-91, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24261476

RESUMO

In vitro protein-folding studies using chemical denaturants such as urea are indispensible in elucidating the forces and mechanisms determining the stability, structure, and dynamics of water-soluble proteins. By contrast, α-helical membrane-associated proteins largely evade such approaches because they are resilient to extensive unfolding. We have used optical and NMR spectroscopy to provide an atomistic-level dissection of the effects of urea on the structure and dynamics of the α-helical membrane-associated protein Mistic as well as its interactions with detergent and solvent molecules. In the presence of the zwitterionic detergent lauryl dimethylamine oxide, increasing concentrations of urea result in a complex sequence of conformational changes that go beyond simple two-state unfolding. Exploiting this finding, we report the first high-resolution structural models of the urea denaturation process of an α-helical membrane-associated protein and its completely unfolded state, which contains almost no regular secondary structure but nevertheless retains a topology close to that of the folded state.


Assuntos
Proteínas de Membrana/química , Desnaturação Proteica , Sequência de Aminoácidos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos , Solubilidade
6.
Angew Chem Int Ed Engl ; 51(2): 432-5, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22113890

RESUMO

Membrane proteins in their native cellular membranes are accessible by dynamic nuclear polarization magic angle spinning solid-state NMR spectroscopy without the need of purification and reconstitution (see picture). Dynamic nuclear polarization is essential to achieve the required gain in sensitivity to observe the membrane protein of interest.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteínas de Membrana/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Membrana Celular/química , Modelos Moleculares
7.
Biochemistry ; 48(10): 2216-25, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19159328

RESUMO

The Escherichia coli maltose transporter belongs to the ATP binding cassette (ABC) transporter superfamily. Recently, the crystal structure of the full transporter MalFGK2 in complex with the maltose binding protein (MBP) was determined [Oldham, M. L., et al. (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515-522]. Using liquid-state NMR, we find that the periplasmic loop P2 of MalF (MalF-P2) folds independently in solution and adopts a well-defined tertiary structure which is similar to the one found in the crystal. MalF-P2 interacts with the maltose binding protein, independent of the transmembrane region of MalF and MalG with an affinity of 10-20 microM, in the presence and absence of substrate. Analysis of residual dipolar coupling (RDC) experiments shows that the conformation of the two individual domains of MalF-P2 is preserved in the absence of MalE and resembles the conformation in the X-ray structure. Upon titration of MalE to MalF-P2, the two domains of MalF-P2 change their relative orientation to accommodate the ligand. In particular, a conformational change of domain 2 of MalF-P2 is induced, which is distinct from the conformation found in the X-ray structure.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Calorimetria , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Cisteína/química , Bases de Dados de Proteínas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Maltose/química , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Ressonância Magnética Nuclear Biomolecular , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Fenantrolinas/química , Ligação Proteica/fisiologia , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
J Mol Biol ; 391(5): 918-32, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19527728

RESUMO

In previous work, a strongly stabilized variant of the beta1 domain of streptococcal protein G (Gbeta1) was obtained by an in vitro selection method. This variant, termed Gbeta1-M2, contains the four substitutions E15V, T16L, T18I, and N37L. Here we elucidated the molecular basis of the observed strong stabilizations. The contributions of these four residues were analyzed individually and in various combinations, additional selections with focused Gbeta1 gene libraries were performed, and the crystal structure of Gbeta1-M2 was determined. All single substitutions (E15V, T16L, T18I, and N37L) stabilize wild-type Gbeta1 by contributions of between 1.6 and 6.0 kJ mol(-1) (at 70 degrees C). Hydrophobic residues at positions 16 and 37 provide the major contribution to stabilization by enlarging the hydrophobic core of Gbeta1. They also increase the tendency to form dimers, as shown by dependence on the concentration of apparent molecular mass in analytical ultracentrifugation, by concentration-dependent stability, and by a strongly increased van't Hoff enthalpy of unfolding. The 0.88-A crystal structure of Gbeta1-M2 and NMR measurements in solution provide the explanation for the observed dimer formation. It involves a head-to-head arrangement of two Gbeta1-M2 molecules via six intermolecular hydrogen bonds between the two beta strands 2 and 2' and an adjacent self-complementary hydrophobic surface area, which is created by the T16L and N37L substitutions and a large 120 degrees rotation of the Tyr33 side chain. This removal of hydrophilic groups and the malleability of the created hydrophobic surface provide the basis for the dimer formation of stabilized Gbeta1 variants.


Assuntos
Proteínas de Bactérias/química , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Desnaturação Proteica , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA