Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nucleic Acids Res ; 49(4): 2289-2305, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33524109

RESUMO

GNRA tetraloop-binding receptor interactions are key components in the macromolecular assembly of a variety of functional RNAs. In nature, there is an apparent bias for GAAA/11nt receptor and GYRA/helix interactions, with the former interaction being thermodynamically more stable than the latter. While past in vitro selections allowed isolation of novel GGAA and GUGA receptors, we report herein an in vitro selection that revealed several novel classes of specific GUAA receptors with binding affinities comparable to those from natural GAAA/11nt interactions. These GUAA receptors have structural homology with double-locked bulge RNA modules naturally occurring in ribosomal RNAs. They display mutational robustness that enables exploration of the sequence/phenotypic space associated to GNRA/receptor interactions through epistasis. Their thermodynamic self-assembly fitness landscape is characterized by a rugged neutral network with possible evolutionary trajectories toward natural GNRA/receptor interactions. High throughput sequencing analysis revealed synergetic mutations located away from the tertiary interactions that positively contribute to assembly fitness. Our study suggests that the repertoire of GNRA/receptor interactions is much larger than initially thought from the analysis of natural stable RNA molecules and also provides clues for their evolution towards natural GNRA/receptors.


Assuntos
RNA/química , Evolução Molecular Direcionada , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico
2.
Nucleic Acids Res ; 47(12): 6439-6451, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31045210

RESUMO

Naturally occurring RNAs are known to exhibit a high degree of modularity, whereby specific structural modules (or motifs) can be mixed and matched to create new molecular architectures. The modular nature of RNA also affords researchers the ability to characterize individual structural elements in controlled synthetic contexts in order to gain new and critical insights into their particular structural features and overall performance. Here, we characterized the binding affinity of a unique loop-receptor interaction found in the tetrahydrofolate (THF) riboswitch using rationally designed self-assembling tectoRNAs. Our work suggests that the THF loop-receptor interaction has been fine-tuned for its particular role as a riboswitch component. We also demonstrate that the thermodynamic stability of this interaction can be modulated by the presence of folinic acid, which induces a local structural change at the level of the loop-receptor. This corroborates the existence of a THF binding site within this tertiary module and paves the way for its potential use as a THF responsive module for RNA nanotechnology and synthetic biology.


Assuntos
RNA/química , Riboswitch , Tetra-Hidrofolatos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Leucovorina/metabolismo , Termodinâmica
3.
Nucleic Acids Res ; 47(1): 480-494, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30418638

RESUMO

Stable RNAs rely on a vast repertoire of long-range interactions to assist in the folding of complex cellular machineries such as the ribosome. The universally conserved L39/H89 interaction is a long-range GNRA-like/receptor interaction localized in proximity to the peptidyl transferase center of the large subunit of the ribosome. Because of its central location, L39/H89 likely originated at an early evolutionary stage of the ribosome and played a significant role in its early function. However, L39/H89 self-assembly is impaired outside the ribosomal context. Herein, we demonstrate that structural modularity principles can be used to re-engineer L39/H89 to self-assemble in vitro. The new versions of L39/H89 improve affinity and loop selectivity by several orders of magnitude and retain the structural and functional features of their natural counterparts. These versions of L39/H89 are proposed to be ancestral forms of L39/H89 that were capable of assembling and folding independently from proteins and post-transcriptional modifications. This work demonstrates that novel RNA modules can be rationally designed by taking advantage of the modular syntax of RNA. It offers the prospect of creating new biochemical models of the ancestral ribosome and increases the tool kit for RNA nanotechnology and synthetic biology.


Assuntos
Conformação de Ácido Nucleico , Proteínas Ribossômicas/química , Ribossomos/química , Thermus thermophilus/química , Modelos Moleculares , Nanotecnologia , Conformação Proteica , RNA/química , RNA/genética , Estabilidade de RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Thermus thermophilus/genética
4.
Nucleic Acids Res ; 46(10): 5182-5194, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850893

RESUMO

Tertiary sequence motifs encode interactions between RNA helices that create the three-dimensional structures of ribosomal subunits. A Right Angle motif at the junction between 16S helices 5 and 6 (J5/6) is universally conserved amongst small subunit rRNAs and forms a stable right angle in minimal RNAs. J5/6 does not form a right angle in the mature ribosome, suggesting that this motif encodes a metastable structure needed for ribosome biogenesis. In this study, J5/6 mutations block 30S ribosome assembly and 16S maturation in Escherichia coli. Folding assays and in-cell X-ray footprinting showed that J5/6 mutations favor an assembly intermediate of the 16S 5' domain and prevent formation of the central pseudoknot. Quantitative mass spectrometry revealed that mutant pre-30S ribosomes lack protein uS12 and are depleted in proteins uS5 and uS2. Together, these results show that impaired folding of the J5/6 right angle prevents the establishment of inter-domain interactions, resulting in global collapse of the 30S structure observed in electron micrographs of mutant pre-30S ribosomes. We propose that the J5/6 motif is part of a spine of RNA helices that switch conformation at distinct stages of assembly, linking peripheral domains with the 30S active site to ensure the integrity of 30S biogenesis.


Assuntos
Escherichia coli/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Espectrometria de Massas/métodos , Mutação , Conformação de Ácido Nucleico , RNA Ribossômico 16S/genética , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Raios X
5.
Int J Mol Sci ; 20(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717552

RESUMO

Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an abundant nuclear-localized long noncoding RNA (lncRNA) that has significant roles in cancer. While the interacting partners and evolutionary sequence conservation of MALAT1 have been examined, much of the structure of MALAT1 is unknown. Here, we propose a hypothetical secondary structural model for 8425 nucleotides of human MALAT1 using three experimental datasets that probed RNA structures in vitro and in various human cell lines. Our model indicates that approximately half of human MALAT1 is structured, forming 194 helices, 13 pseudoknots, five structured tetraloops, nine structured internal loops, and 13 intramolecular long-range interactions that give rise to several multiway junctions. Evolutionary conservation and covariation analyses support 153 of 194 helices in 51 mammalian MALAT1 homologs and 42 of 194 helices in 53 vertebrate MALAT1 homologs, thereby identifying an evolutionarily conserved core that likely has important functional roles in mammals and vertebrates. Data mining revealed that RNA modifications, somatic cancer-associated mutations, and single-nucleotide polymorphisms may induce structural rearrangements that sequester or expose binding sites for several cancer-associated microRNAs. Our findings reveal new mechanistic leads into the roles of MALAT1 by identifying several intriguing structure-function relationships in which the dynamic structure of MALAT1 underlies its biological functions.


Assuntos
RNA Longo não Codificante/química , Sequência de Bases , Humanos , Mutação , Neoplasias/genética , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética
6.
Nano Lett ; 17(11): 7095-7101, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039189

RESUMO

Natural stable RNAs fold and assemble into complex three-dimensional architectures by relying on the hierarchical formation of intricate, recurrent networks of noncovalent tertiary interactions. These sequence-dependent networks specify RNA structural modules enabling orientational and topological control of helical struts to form larger self-folding domains. Borrowing concepts from linguistics, we defined an extended structural syntax of RNA modules for programming RNA strands to assemble into complex, responsive nanostructures under both thermodynamic and kinetic control. Based on this syntax, various RNA building blocks promote the multimolecular assembly of objects with well-defined three-dimensional shapes as well as the isothermal folding of long RNAs into complex single-stranded nanostructures during transcription. This work offers a glimpse of the limitless potential of RNA as an informational medium for designing programmable and functional nanomaterials useful for synthetic biology, nanomedicine, and nanotechnology.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , RNA/química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Dobramento de RNA
7.
Acc Chem Res ; 47(6): 1871-80, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24856178

RESUMO

CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , RNA/química , Nanomedicina , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Riboswitch , Termodinâmica
8.
Methods ; 67(2): 256-65, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24189588

RESUMO

The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.


Assuntos
Nanoestruturas/química , RNA/química , Anisotropia , Simulação por Computador , Microscopia Crioeletrônica , Luz , Modelos Químicos , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , RNA/ultraestrutura , Espalhamento de Radiação
9.
Nano Lett ; 14(10): 5662-71, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25267559

RESUMO

Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.


Assuntos
Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Terapia Genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos Nus , Modelos Moleculares , Nanopartículas/ultraestrutura , Neoplasias/genética , Neoplasias/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
10.
Nucleic Acids Res ; 40(5): 2168-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080507

RESUMO

RNA tetraloops can recognize receptors to mediate long-range interactions in stable natural RNAs. In vitro selected GNRA tetraloop/receptor interactions are usually more 'G/C-rich' than their 'A/U-rich' natural counterparts. They are not as widespread in nature despite comparable biophysical and chemical properties. Moreover, while AA, AC and GU dinucleotide platforms occur in natural GAAA/11 nt receptors, the AA platform is somewhat preferred to the others. The apparent preference for 'A/U-rich' GNRA/receptor interactions in nature might stem from an evolutionary adaptation to avoid folding traps at the level of the larger molecular context. To provide evidences in favor of this hypothesis, several riboswitches based on natural and artificial GNRA receptors were investigated in vitro for their ability to prevent inter-molecular GNRA/receptor interactions by trapping the receptor sequence into an alternative intra-molecular pseudoknot. Extent of attenuation determined by native gel-shift assays and co-transcriptional assembly is correlated to the G/C content of the GNRA receptor. Our results shed light on the structural evolution of natural long-range interactions and provide design principles for RNA-based attenuator devices to be used in synthetic biology and RNA nanobiotechnology.


Assuntos
RNA/química , Riboswitch , Dimerização , Magnésio/química , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Mutação Puntual , Transcrição Gênica
11.
Nucleic Acids Res ; 39(3): 1066-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20876687

RESUMO

RNA molecules take advantage of prevalent structural motifs to fold and assemble into well-defined 3D architectures. The A-minor junction is a class of RNA motifs that specifically controls coaxial stacking of helices in natural RNAs. A sensitive self-assembling supra-molecular system was used as an assay to compare several natural and previously unidentified A-minor junctions by native polyacrylamide gel electrophoresis and atomic force microscopy. This class of modular motifs follows a topological rule that can accommodate a variety of interchangeable A-minor interactions with distinct local structural motifs. Overall, two different types of A-minor junctions can be distinguished based on their functional self-assembling behavior: one group makes use of triloops or GNRA and GNRA-like loops assembling with helices, while the other takes advantage of more complex tertiary receptors specific for the loop to gain higher stability. This study demonstrates how different structural motifs of RNA can contribute to the formation of topologically equivalent helical stacks. It also exemplifies the need of classifying RNA motifs based on their tertiary structural features rather than secondary structural features. The A-minor junction rule can be used to facilitate tertiary structure prediction of RNAs and rational design of RNA parts for nanobiotechnology and synthetic biology.


Assuntos
RNA/química , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Modelos Moleculares , Nanoestruturas/química , Conformação de Ácido Nucleico , RNA/ultraestrutura
12.
Nano Lett ; 12(10): 5192-5, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23016824

RESUMO

We report a generalized methodology for the one-pot production of chemically modified functional RNA nanoparticles during in vitro transcription with T7 RNA polymerase. The efficiency of incorporation of 2'-fluoro-dNTP in the transcripts by the wild type T7 RNA polymerase dramatically increases in the presence of manganese ions, resulting in a high-yield production of chemically modified RNA nanoparticles functionalized with siRNAs that are resistant to nucleases from human blood serum. Moreover, the unpurified transcription mixture can be used for functional ex vivo pilot experiments.


Assuntos
Nanopartículas/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA/química , Linhagem Celular Tumoral , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Nanopartículas/administração & dosagem , Nanotecnologia , RNA/genética , RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo
13.
Methods ; 54(2): 239-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21163354

RESUMO

In the emerging field of RNA-based nanotechnology there is a need for automation of the structure design process. Our goal is to develop computer methods for aiding in this process. Towards that end, we created the RNA junction database, which is a repository of RNA junctions, i.e. internal, multi-branch and kissing loops with emanating stem stubs, extracted from the larger RNA structures stored in the PDB database. These junctions can be used as building blocks for nanostructures. Two programs developed in our laboratory, NanoTiler and RNA2D3D, can combine such building blocks with idealized fragments of A-form helices to produce desired 3D nanostructures. Initially, the building blocks are treated as rigid objects and the resulting geometry is tested against the design objectives. Experimental data, however, shows that RNA accommodates its shape to the constraints of larger structural contexts. Therefore we are adding analysis of the flexibility of our building blocks to the full design process. Here we present an example of RNA-based nanostructure design, putting emphasis on the need to characterize the structural flexibility of the building blocks to induce ring closure in the automated exploration. We focus on the use of kissing loops (KL) in nanostructure design, since they have been shown to play an important role in RNA self-assembly. By using an experimentally proven system, the RNA tectosquare, we show that considering the flexibility of the KLs as well as distortions of helical regions may be necessary to achieve a realistic design.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas/química , Conformação de Ácido Nucleico , RNA/química , Pareamento de Bases , Sequências Repetidas Invertidas
14.
Nano Lett ; 11(2): 878-87, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21229999

RESUMO

RNA is an attractive biopolymer for nanodesign of self-assembling particles for nanobiotechnology and synthetic biology. Here, we experimentally characterize by biochemical and biophysical methods the formation of thermostable and ribonuclease resistant RNA nanorings previously proposed by computational design. High yields of fully programmable nanorings were produced based on several RNAI/IIi kissing complex variants selected for their ability to promote polygon self-assembly. This self-assembly strategy relying on the particular geometry of bended kissing complexes has potential for developing short interfering RNA delivery agents.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , RNA/química , RNA/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação de Ácido Nucleico , Tamanho da Partícula , Propriedades de Superfície
15.
Nucleic Acids Res ; 37(1): 215-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19036788

RESUMO

Stable RNAs are modular and hierarchical 3D architectures taking advantage of recurrent structural motifs to form extensive non-covalent tertiary interactions. Sequence and atomic structure analysis has revealed a novel submotif involving a minimal set of five nucleotides, termed the UA_handle motif (5'XU/AN(n)X3'). It consists of a U:A Watson-Crick: Hoogsteen trans base pair stacked over a classic Watson-Crick base pair, and a bulge of one or more nucleotides that can act as a handle for making different types of long-range interactions. This motif is one of the most versatile building blocks identified in stable RNAs. It enters into the composition of numerous recurrent motifs of greater structural complexity such as the T-loop, the 11-nt receptor, the UAA/GAN and the G-ribo motifs. Several structural principles pertaining to RNA motifs are derived from our analysis. A limited set of basic submotifs can account for the formation of most structural motifs uncovered in ribosomal and stable RNAs. Structural motifs can act as structural scaffoldings and be functionally and topologically equivalent despite sequence and structural differences. The sequence network resulting from the structural relationships shared by these RNA motifs can be used as a proto-language for assisting prediction and rational design of RNA tertiary structures.


Assuntos
Adenina/química , RNA/química , Uracila/química , Pareamento de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , Ribonucleotídeos/química , Análise de Sequência de RNA
16.
J Am Chem Soc ; 132(20): 7025-37, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20438082

RESUMO

The structure of a DNA-dimethyldidodecylammonium bromide (DDAB) film was recently described to undergo a distinctive transition in response to the water content in the surrounding environment. The existence, preparation, and basic properties of DNA-surfactant films have been known in the literature for some time. Here, we describe the structural response of DNA-DDAB films to environmental changes, particularly temperature and humidity, in greater detail revealing new structural states. We can direct the lamellar structure of the film into three distinct states--double-stranded DNA (dsDNA) paired with an interdigitated bilayer of DDAB (bDDAB), single-stranded DNA (ssDNA) with monolayer of DDAB (mDDAB), and ssDNA with bDDAB. Both temperature and humidity cause the molecules composing the lamellar structure to change reversibly from ssDNA to dsDNA and/or from mDDAB to bDDAB. We found that the structural transition from dsDNA to ssDNA and bDDAB to mDDAB is concerted and follows apparent first-order kinetics. We also found that the double-stranded conformation of DNA in the film can be stabilized with the inclusion of cholesterol even while the DDAB in the film is able to form either a monolayer or bilayer depending on the environmental conditions. Films treated with ethidium bromide prompt switching of dsDNA to ssDNA before bDDAB transitions to mDDAB. Swelling experiments have determined that there is a direct proportionality between the macroscopic increase in volume and the nanoscopic increase in lamellar spacing when a film is allowed to swell in water. Finally, experiments with phosphate-buffered saline (PBS) indicate that the films can disassemble in a simulated biological environment due to screening of their charges by buffer salt. We conclude that the structure of DNA in the film depends on the water content (as measured by the relative humidity) and temperature of the environment, while the state of DDAB depends essentially only on the water content. The structure of the film is quite flexible and can be altered by changing environmental conditions as well as the chemical ingredients. These films will have useful, new applications as responsive materials, for example, in drug and gene delivery.


Assuntos
DNA/química , Compostos de Amônio Quaternário/química , Temperatura , Animais , Soluções Tampão , Colesterol/metabolismo , DNA/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Etídio/química , Umidade , Fosfatos/química , Compostos de Amônio Quaternário/metabolismo , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
17.
Nucleic Acids Res ; 36(4): 1138-52, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18158305

RESUMO

Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.


Assuntos
RNA/química , Adenina/química , Sequência de Bases , Dimerização , Evolução Molecular Direcionada , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/classificação , Análise de Sequência de RNA , Termodinâmica
18.
Nat Commun ; 11(1): 2900, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518240

RESUMO

5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis.


Assuntos
RNA Ribossômico 5S/metabolismo , Ribossomos/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica , Engenharia Genética , Mutação , Conformação de Ácido Nucleico , Peptidil Transferases/metabolismo , RNA Bacteriano , RNA Ribossômico 23S/metabolismo , Recombinases Rec A/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
19.
Nanoscale ; 12(4): 2555-2568, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932830

RESUMO

Using RNA as a material for nanoparticle construction provides control over particle size and shape at the nano-scale. RNA nano-architectures have shown promise as delivery vehicles for RNA interference (RNAi) substrates, allowing multiple functional entities to be combined on a single particle in a programmable fashion. Rather than employing a completely bottom-up approach to scaffold design, here multiple copies of an existing synthetic supramolecular RNA nano-architecture serve as building blocks along with additional motifs for the design of a novel truncated tetrahedral RNA scaffold, demonstrating that rationally designed RNA assemblies can themselves serve as modular pieces in the construction of larger rationally designed structures. The resulting tetrahedral scaffold displays enhanced characteristics for RNAi-substrate delivery in comparison to similar RNA-based scaffolds, as evidenced by its increased functional capacity, increased cellular uptake and ultimately an increased RNAi efficacy of its adorned Dicer substrate siRNAs. The unique truncated tetrahedral shape of the nanoparticle core appears to contribute to this particle's enhanced function, indicating the physical characteristics of RNA scaffolds merit significant consideration when designing platforms for delivery of functional RNAs via RNA nanoparticles.


Assuntos
RNA Helicases DEAD-box/química , Nanoestruturas/química , Interferência de RNA , RNA/química , Ribonuclease III/química , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/química , Humanos , Luz , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Tamanho da Partícula , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , RNA Interferente Pequeno , Espalhamento de Radiação , Software , Termodinâmica , Quinase 1 Polo-Like
20.
J Am Chem Soc ; 131(10): 3440-1, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19275252

RESUMO

We describe the novel structure and behavior of a DNA-DDAB complex film cast from an organic solvent and exhibiting a structural switching transition as it is dried or wetted with water. The film was easily prepared by formation of a complex between the negatively charged phosphate groups of DNA and the positively charged headgroup of the surfactant DDAB. This complex was then purified, dried, dissolved in 2-propanol, and cast onto a glass slide to form a self-standing film by means of slow evaporation. While the structure of the dried film was found to be composed of single-stranded DNA and a monolayer of DDAB, upon hydration of the film, the structure switched to double-stranded DNA complexed to a bilayer of DDAB. We expect this phenomenon to serve as a useful model for the design of new responsive materials and programmable self-assembly.


Assuntos
DNA/química , Compostos de Amônio Quaternário/química , Dicroísmo Circular , Estrutura Molecular , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA