Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.

3.
Hum Mol Genet ; 31(15): 2571-2581, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35262690

RESUMO

The transmembrane domain recognition complex (TRC) pathway is required for the insertion of C-terminal tail-anchored (TA) proteins into the lipid bilayer of specific intracellular organelles such as the endoplasmic reticulum (ER) membrane. In order to facilitate correct insertion, the recognition complex (consisting of BAG6, GET4 and UBL4A) must first bind to TA proteins and then to GET3 (TRC40, ASNA1), which chaperones the protein to the ER membrane. Subsequently, GET1 (WRB) and CAML form a receptor that enables integration of the TA protein within the lipid bilayer. We report an individual with the homozygous c.633 + 4A>G splice variant in CAMLG, encoding CAML. This variant leads to aberrant splicing and lack of functional protein in patient-derived fibroblasts. The patient displays a predominantly neurological phenotype with psychomotor disability, hypotonia, epilepsy and structural brain abnormalities. Biochemically, a combined O-linked and type II N-linked glycosylation defect was found. Mislocalization of syntaxin-5 in patient fibroblasts and in siCAMLG deleted Hela cells confirms this as a consistent cellular marker of TRC dysfunction. Interestingly, the level of the v-SNARE Bet1L is also drastically reduced in both of these models, indicating a fundamental role of the TRC complex in the assembly of Golgi SNARE complexes. It also points towards a possible mechanism behind the hyposialylation of N and O-glycans. This is the first reported patient with pathogenic variants in CAMLG. CAMLG-CDG is the third disorder, after GET4 and GET3 deficiencies, caused by pathogenic variants in a member of the TRC pathway, further expanding this novel group of disorders.


Assuntos
Retículo Endoplasmático , Bicamadas Lipídicas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicosilação , Células HeLa , Humanos , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qc-SNARE/análise , Proteínas Qc-SNARE/metabolismo , Ubiquitinas/metabolismo
4.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
5.
Cell Mol Life Sci ; 79(3): 150, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35211808

RESUMO

The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Lectinas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Hum Genet ; 141(7): 1279-1286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182234

RESUMO

Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.


Assuntos
Proteínas de Transporte de Cátions , Síndromes de Imunodeficiência , Transtornos Linfoproliferativos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Magnésio/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
7.
Proc Natl Acad Sci U S A ; 116(20): 9865-9870, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036665

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.


Assuntos
Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/genética , Adolescente , Criança , Defeitos Congênitos da Glicosilação/metabolismo , Análise Mutacional de DNA , Hexosiltransferases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955863

RESUMO

Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders' views on AI for therapy discovery in CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Inteligência Artificial , Biomarcadores , Defeitos Congênitos da Glicosilação/genética , Reposicionamento de Medicamentos , Humanos , Doenças Raras
9.
Genet Med ; 23(4): 637-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33244166

RESUMO

PURPOSE: Hardikar syndrome (MIM 612726) is a rare multiple congenital anomaly syndrome characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, but with preserved cognition. Only four patients have been reported previously, and none had a molecular diagnosis. Our objective was to identify the genetic basis of Hardikar syndrome (HS) and expand the phenotypic spectrum of this disorder. METHODS: We performed exome sequencing on two previously reported and five unpublished female patients with a clinical diagnosis of HS. X-chromosome inactivation (XCI) studies were also performed. RESULTS: We report clinical features of HS with previously undescribed phenotypes, including a fatal unprovoked intracranial hemorrhage at age 21. We additionally report the discovery of de novo pathogenic nonsense and frameshift variants in MED12 in these seven individuals and evidence of extremely skewed XCI in all patients with informative testing. CONCLUSION: Pathogenic missense variants in the X-chromosome gene MED12 have previously been associated with Opitz-Kaveggia syndrome, Lujan syndrome, Ohdo syndrome, and nonsyndromic intellectual disability, primarily in males. We propose a fifth, female-specific phenotype for MED12, and suggest that nonsense and frameshift loss-of-function MED12 variants in females cause HS. This expands the MED12-associated phenotype in females beyond intellectual disability.


Assuntos
Deficiência Intelectual , Complexo Mediador/genética , Deficiência Intelectual Ligada ao Cromossomo X , Retinose Pigmentar , Adulto , Colestase , Fissura Palatina , Feminino , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Fenótipo , Adulto Jovem
10.
J Pediatr ; 231: 148-156, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340551

RESUMO

OBJECTIVE: To describe the clinical, biochemical, and genetic features of both new and previously reported patients with congenital disorders of glycosylation (CDGs) diagnosed in Portugal over the last 20 years. STUDY DESIGN: The cohort includes patients with an unexplained multisystem or single organ involvement, with or without psychomotor disability. Serum sialotransferrin isoforms and, whenever necessary, apolipoprotein CIII isoforms and glycan structures were analyzed. Additional studies included measurement of phosphomannomutase (PMM) activity and analysis of lipid-linked oligosaccharides in fibroblasts. Sanger sequencing and massive parallel sequencing were used to identify causal variants or the affected gene, respectively. RESULTS: Sixty-three individuals were diagnosed covering 14 distinct CDGs; 43 patients diagnosed postnatally revealed a type 1, 14 a type 2, and 2 a normal pattern on serum transferrin isoelectrofocusing. The latter patients were identified by whole exome sequencing. Nine of them presented also a hypoglycosylation pattern on apolipoprotein CIII isoelectrofocusing, pointing to an associated O-glycosylation defect. Most of the patients (62%) are PMM2-CDG and the remaining carry pathogenic variants in ALG1, ATP6AP1, ATP6AP2, ATP6V0A2, CCDC115, COG1, COG4, DPAGT1, MAN1B1, SLC35A2, SRD5A3, RFT1, or PGM1. CONCLUSIONS: Portuguese patients with CDGs are presented in this report, some of them showing unique clinical phenotypes. Among the 14 genes mutated in Portuguese individuals, 8 are shared with a previously reported Spanish cohort. However, regarding the mutational spectrum of PMM2-CDG, the most frequent CDG, a striking similarity between the 2 populations was found, as only 1 mutated allele found in the Portuguese group has not been reported in Spain.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Portugal , Fatores de Tempo , Adulto Jovem
11.
Glycoconj J ; 38(2): 201-211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32915358

RESUMO

N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.


Assuntos
Defeitos Congênitos da Glicosilação/sangue , Polissacarídeos/sangue , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Isomerismo , Manosidases/deficiência , Proteínas de Membrana/deficiência , alfa-Glucosidases/metabolismo
12.
Cerebellum ; 20(4): 596-605, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33619652

RESUMO

We aimed to identify clinical, molecular and radiological correlates of activities of daily living (ADL) in patients with cerebellar atrophy caused by PMM2 mutations (PMM2-CDG), the most frequent congenital disorder of glycosylation. Twenty-six PMM2-CDG patients (12 males; mean age 13 ± 11.1 years) underwent a standardized assessment to measure ADL, ataxia (brief ataxia rating scale, BARS) and phenotype severity (Nijmegen CDG rating scale, NCRS). MRI biometry of the cerebellum and the brainstem were performed in 23 patients (11 males; aged 5 months-18 years) and 19 control subjects with equal gender and age distributions. The average total ADL score was 15.3 ± 8.5 (range 3-32 out of 36 indicating severe functional disability), representing variable functional outcome in PMM2-CDG patients. Total ADL scores were significantly correlated with NCRS (r2 = 0.55, p < 0.001) and BARS scores (r2 = 0.764; p < 0.001). Severe intellectual disability, peripheral neuropathy, and severe PMM2 variants were all significantly associated with worse functional outcome. Higher ADL scores were significantly associated with decreased diameters of cerebellar vermis (r2 = 0.347; p = 0.004), hemispheres (r2 = 0.436; p = 0.005), and brainstem, particularly the mid-pons (r2 = 0.64; p < 0.001) representing the major radiological predictor of functional disability score in multivariate regression analysis. We show that cerebellar syndrome severity, cognitive level, peripheral neuropathy, and genotype correlate with ADL used to quantify disease-related deficits in PMM2-CDG. Brainstem involvement should be regarded among functional outcome predictors in patients with cerebellar atrophy caused by PMM2-CDG.


Assuntos
Atividades Cotidianas , Doenças Cerebelares , Mutação , Fosfotransferases (Fosfomutases) , Atrofia , Defeitos Congênitos da Glicosilação , Humanos , Masculino , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/genética
13.
J Inherit Metab Dis ; 44(1): 148-163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681750

RESUMO

Phosphoglucomutase 1 (PGM1) deficiency is a rare genetic disorder that affects glycogen metabolism, glycolysis, and protein glycosylation. Previously known as GSD XIV, it was recently reclassified as a congenital disorder of glycosylation, PGM1-CDG. PGM1-CDG usually manifests as a multisystem disease. Most patients present as infants with cleft palate, liver function abnormalities and hypoglycemia, but some patients present in adulthood with isolated muscle involvement. Some patients develop life-threatening cardiomyopathy. Unlike most other CDG, PGM1-CDG has an effective treatment option, d-galactose, which has been shown to improve many of the patients' symptoms. Therefore, early diagnosis and initiation of treatment for PGM1-CDG patients are crucial decisions. In this article, our group of international experts suggests diagnostic, follow-up, and management guidelines for PGM1-CDG. These guidelines are based on the best available evidence-based data and experts' opinions aiming to provide a practical resource for health care providers to facilitate successful diagnosis and optimal management of PGM1-CDG patients.


Assuntos
Gerenciamento Clínico , Galactose/uso terapêutico , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Adulto , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Consenso , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/enzimologia , Humanos , Hipoglicemia/complicações , Lactente , Cooperação Internacional , Doenças Musculares/complicações , Doenças Musculares/patologia
14.
Brain ; 143(8): 2437-2453, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761064

RESUMO

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Deficiências do Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Doenças do Sistema Nervoso/genética , Humanos , Mutação , Fenótipo , Transporte Proteico/genética , Transdução de Sinais/genética
15.
Ann Neurol ; 85(5): 740-751, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30873657

RESUMO

OBJECTIVE: Phosphomannomutase deficiency (PMM2 congenital disorder of glycosylation [PMM2-CDG]) causes cerebellar syndrome and strokelike episodes (SLEs). SLEs are also described in patients with gain-of-function mutations in the CaV2.1 channel, for which acetazolamide therapy is suggested. Impairment in N-glycosylation of CaV2.1 promotes gain-of-function effects and may participate in cerebellar syndrome in PMM2-CDG. AZATAX was designed to establish whether acetazolamide is safe and improves cerebellar syndrome in PMM2-CDG. METHODS: A clinical trial included PMM2-CDG patients, with a 6-month first-phase single acetazolamide therapy group, followed by a randomized 5-week withdrawal phase. Safety was assessed. The primary outcome measure was improvement in the International Cooperative Ataxia Rating Scale (ICARS). Other measures were the Nijmegen Pediatric CDG Rating Scale (NPCRS), a syllable repetition test (PATA test), and cognitive scores. RESULTS: Twenty-four patients (mean age = 12.3 ± 4.5 years) were included, showing no serious adverse events. Thirteen patients required dose adjustment due to low bicarbonate or asthenia. There were improvements on ICARS (34.9 ± 23.2 vs 40.7 ± 24.8, effect size = 1.48, 95% confidence interval [CI] = 4.0-7.6, p < 0.001), detected at 6 weeks in 18 patients among the 20 responders, on NPCRS (95% CI = 0.3-1.6, p = 0.013) and on the PATA test (95% CI = 0.5-3.0, p = 0.006). Acetazolamide improved prothrombin time, factor X, and antithrombin. Clinical severity, epilepsy, and lipodystrophy predicted greater response. The randomized withdrawal phase showed ICARS worsening in the withdrawal group (effect size = 1.46, 95% CI = 2.65-7.52, p = 0.001). INTERPRETATION: AZATAX is the first clinical trial of PMM2-CDG. Acetazolamide is well tolerated and effective for motor cerebellar syndrome. Its ability to prevent SLEs and its long-term effects on kidney function should be addressed in future studies. Ann Neurol 2019;85:740-751.


Assuntos
Acetazolamida/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/tratamento farmacológico , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Fosfotransferases (Fosfomutases)/deficiência , Acetazolamida/farmacologia , Adolescente , Inibidores da Anidrase Carbônica/farmacologia , Doenças Cerebelares/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Feminino , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
16.
J Inherit Metab Dis ; 43(4): 701-711, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31804708

RESUMO

In the rapidly growing group of rare genetic disorders, data scarcity demands an intelligible use of available data, in order to improve understanding of underlying pathophysiology. We hypothesize, based on the principle that clinical similarities may be indicative of shared pathophysiology, that determining phenotypic specificity could provide unsuspected insights in pathophysiology of rare genetic disorders. We explored our hypothesis by studying subunit deficiencies of the conserved oligomeric Golgi (COG) complex, a subgroup of congenital disorders of glycosylation (CDG). In this systematic data assessment, all 45 reported patients with COG-CDG were included. The vocabulary of the Human Phenotype Ontology was used to annotate all phenotypic features and to assess occurrence in other genetic disorders. Gene occurrence ratios were calculated by dividing the frequency in the patient cohort over the number of associated genes, according to the Human Phenotype Ontology. Prioritisation based on phenotypic specificity was highly informative and captured phenotypic features commonly associated with glycosylation disorders. Moreover, it captured features not seen in any other glycosylation disorder, among which episodic fever, likely reflecting underappreciated other cellular functions of the COG complex. Interestingly, the COG complex was recently implicated in the autophagy pathway, as are more than half of the genes underlying disorders that present with episodic fever. This suggests that whereas many phenotypic features in these patients are caused by disrupted glycosylation, episodic fever might be caused by disrupted autophagy. Thus, we here demonstrate support for our hypothesis that determining phenotypic specificity could facilitate understanding of pathophysiology in rare genetic disorders.


Assuntos
Defeitos Congênitos da Glicosilação/etiologia , Complexos Multiproteicos/genética , Mutação , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Complexos Multiproteicos/química , Fenótipo
17.
J Inherit Metab Dis ; 43(1): 90-124, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095764

RESUMO

Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-ß1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Fenótipo
18.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781578

RESUMO

N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.


Assuntos
Plaquetas/metabolismo , Animais , Cálcio/metabolismo , Metabolismo Energético , Glicosilação , Homeostase , Humanos , Modelos Biológicos
19.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833332

RESUMO

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Assuntos
Complexo de Golgi/genética , Homeostase , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Fibroblastos/citologia , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Heterozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Genet Med ; 21(5): 1181-1188, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293989

RESUMO

PURPOSE: PMM2-CDG is the most common congenital disorder of glycosylation (CDG), which presents with either a neurologic or multisystem phenotype. Little is known about the longitudinal evolution. METHODS: We performed data analysis on PMM2-CDG patients' clinical features according to the Nijmegen CDG severity score and laboratory data. Seventy-five patients (28 males) were followed up from 11.0 ± 6.91 years for an average of 7.4 ± 4.5 years. RESULTS: On a group level, there was no significant evolution in overall clinical severity. There was some improvement in mobility and communication, liver and endocrine function, and strabismus and eye movements. Educational achievement and thyroid function worsened in some patients. Overall, the current clinical function, the system-specific involvement, and the current clinical assessment remained unchanged. On follow-up there was improvement of biochemical variables with (near) normalization of activated partial thromboplastin time (aPTT), factor XI, protein C, antithrombin, thyroid stimulating hormone, and liver transaminases. CONCLUSION: PMM2-CDG patients show a spontaneous biochemical improvement and stable clinical course based on the Nijmegen CDG severity score. This information is crucial for the definition of endpoints in clinical trials.


Assuntos
Defeitos Congênitos da Glicosilação/epidemiologia , Defeitos Congênitos da Glicosilação/fisiopatologia , Fosfotransferases (Fosfomutases)/deficiência , Adolescente , Criança , Pré-Escolar , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA