Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Res ; 128(4): 665-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25982739

RESUMO

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5% of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.


Assuntos
Ascomicetos/fisiologia , Hordeum/microbiologia , Nematoides/microbiologia , Estresse Fisiológico/fisiologia , Animais , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/genética , Hordeum/metabolismo , Hordeum/parasitologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais
2.
Fungal Genet Biol ; 65: 69-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530791

RESUMO

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.


Assuntos
Ascomicetos/fisiologia , Genoma Fúngico , Nematoides/microbiologia , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Feminino , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Óvulo/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Transdução de Sinais , Transcriptoma
3.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36650008

RESUMO

Non-mammalian model organisms have been essential for our understanding of the mechanisms that control development, disease, and physiology, but they are underutilized in pharmacological and toxicological phenotypic screening assays due to their low throughput in comparison with cell-based screens. To increase the utility of using Drosophila melanogaster in screening, we designed the Whole Animal Feeding FLat (WAFFL), a novel, flexible, and complete system for feeding, monitoring, and assaying flies in a high-throughput format. Our 3D printed system is compatible with inexpensive and readily available, commercial 96-well plate consumables and equipment. Experimenters can change the diet at will during the experiment and video record for behavior analysis, enabling precise dosing, measurement of feeding, and analysis of behavior in a 96-well plate format.


Assuntos
Ração Animal , Drosophila melanogaster , Animais , Drosophila melanogaster/fisiologia , Ensaios de Triagem em Larga Escala
4.
BMC Genomics ; 13: 267, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22727066

RESUMO

BACKGROUND: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. RESULTS: Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. CONCLUSIONS: Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS's mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.


Assuntos
Quitosana/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Haploinsuficiência/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Naftalenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Terbinafina , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
J Genomics ; 5: 128-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109800

RESUMO

Gene expression depends on sex and environment. We stringently explored the contributions of these effects in Drosophila melanogaster by rearing three distinct wildtype genotypes on isocaloric diets either high in protein or sugar followed by expression profiling of heads from the sexes. By using different genotypes as replicates we developed robust sex- and diet-biased expression responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA