Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 255: 119136, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740295

RESUMO

Even though researches have shown that biochar can improve soil-health and plant-growth even in harsh environments and get rid of harmful heavy metals and new contaminants, it is still not sustainable, affordable, or effective enough. Therefore, scientists are required to develop nanomaterials in order to preserve numerous aquatic and terrestrial species. The carbonaceous chemical known as nano-biochar (N-BC) can be used to get rid of metal contamination and emerging contaminants. However, techniques to reduce hetero-aggregation and agglomeration of nano-biochar are needed that lead to the emergence of emerging nano-biochar (EN-BC) in order to maximise its capacity for adsorption of nano-biochar. To address concerns in regards to the expanding human population and sustain a healthy community, it is imperative to address the problems associated with toxic heavy metals, emerging contaminants, and other abiotic stressors that are threatening agricultural development. Nano-biochar can provide an effective solution for removal of emerging contaminants, toxic heavy metals, and non-degradable substance. This review provides the detailed functional mechanistic and kinetics of nano-biochar, its effectiveness in promoting plant growth, and soil health under abiotic stress. Nonetheless, this review paper has comprehensively illustrated various adsorption study models that will be employed in future research.


Assuntos
Carvão Vegetal , Metais Pesados , Desenvolvimento Vegetal , Poluentes do Solo , Metais Pesados/análise , Carvão Vegetal/química , Poluentes do Solo/análise , Poluentes do Solo/química , Adsorção , Desenvolvimento Vegetal/efeitos dos fármacos , Cinética , Recuperação e Remediação Ambiental/métodos
2.
Mol Biol Rep ; 49(5): 3491-3501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35076854

RESUMO

BACKGROUND: In this study, the genetic diversity of local mango (Mangifera indica L.) germplasm including 14 genotypes were evaluated by using morphological, biochemical markers and DNA barcoding technique. Morphological characterization is the first step towards utilizing these germplasm in crop improvement studies. The advanced chloroplast based DNA barcode method can be utilized to assess the genetic diversity and phylogenetic structure in such populations. METHODS: The study was carried out during 2018-2019 years to evaluate local mango germplasm including 14 diverse genotypes based on a number of morphological and biochemical traits and chloroplast DNA barcoding as well. The experiment was laid out in one way ANOVA design with fourteen germplasm indicated with indigenous collection number. RESULTS: Among local mango germplasm, IC 589756 was found to be the most promising with respect to high magnitudes of fruit length, fruit width, fruit weight, pulp weight, soluble solid content (SSC)/Acidity ratio, pH and low acidity followed by IC 589746 exhibiting the highest pulp percentage and SSC accompanied with lowest stone weight and stone percent as compared to the other genotypes. Further, the dendrogram and cluster analyses based on sequencing of chloroplast marker i.e., trnH- psbA and trnCD depicted the relationship among mango genotypes and clearly clustered them into two main clusters at a similarity coefficient 0.035 and 0.150, respectively. The first cluster includes only one genotype and cluster-II contains 13 genotypes. CONCLUSIONS: Particularly results revealed that DNA barcoding of local mango germplasm can assist not only in molecular identification but also help in elucidation of their phylogenetic relationship and thus important in maintaining biodiversity inventories.


Assuntos
Mangifera , Cloroplastos/genética , DNA de Cloroplastos , Frutas/genética , Variação Genética , Mangifera/genética , Filogenia
3.
Bull Environ Contam Toxicol ; 108(3): 468-477, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33860803

RESUMO

The soil samples of old Zawar mine sites were sandy texture, basic, electric conductivity range from 16 to 59 dSm-1 with a high content of heavy metals of Zn, Pb, Cd, and Fe, indicating poor soil-health. Two bacterial isolates Pseudomonas aeruginosa HMR1 and P. aeruginosa HMR16 (GenBank-accession-number KJ191700 and KU174205, respectively), differed in the Phylogenetic tree based on 16S-rDNA sequences. HMR1 isolate showed the high potential of Plant growth-promoting attributes like IAA, Phosphate-solubilization, Exopolysaccharide production, and Proline activities at high concentration of Zn augmented nutrient media after 24 h, followed by HMR1 + HMR16 and HMR16. Both isolates were survived at 100 ppm Zn (w/v) concentration, followed by Pb, Cd, and Fe. Linear RL value from Langmuir and Freundlich isotherms revealed that the suitable condition of Zn adsorption by HMR1 was at pH8 with 40°C. The value of r2 from pseudo-second-order kinetics and Transmission-Electron-Microscopic analysis confirmed Zn adsorption by HMR1.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Filogenia , Pseudomonas aeruginosa , Solo , Poluentes do Solo/análise , Zinco/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-35291306

RESUMO

For the Pacific Small Island Developing States (PSIDS), climate change will greatly exacerbate their vulnerability. The PSIDS have a high ranking in the Climate Risk Index and the World Risk Index. Financial losses due to climate-induced disasters, in terms of gross domestic product (GDP), are also high in the Pacific region. While climate risk insurance solutions could play a key role in the efficient distribution of recovery resources, there are many challenges to their successful implementation. Effective climate risk insurance products for the vulnerable sections of these societies are almost non-existent in this part of the world. Among the worst climate-induced disasters to affect the PSIDS are those related to cyclones and floods. These not only adversely impact the welfare of the households affected by these disasters, but they lower the long-term development potential of the countries involved. There is also evidence to suggest that climate-induced disasters are increasing in frequency and intensity over time due to climate change. It is against this background that an inquiry into the necessity for climate risk insurance products in the context of PSIDS should take place. This paper gives a comprehensive review of the literature addressing climate risk insurance as a risk mitigation or climate adaptation tool for managing the climate-induced financial vulnerabilities in the PSIDS. The paper explores the affordability of climate risk insurance, particularly among the vulnerable sections of society, and discusses the challenges of implementing an appropriate climate risk insurance model in the region. Finally, it examines recent climate risk insurance initiatives that have been attempted by multilateral agencies, such as the United Nations Development Programme (UNDP), the United Nations' Pacific Financial Inclusion Practice (UNCDF), Pacific Insurance and Climate Adaptation Programme (PICAP), and respective local governments.

5.
Curr Microbiol ; 78(2): 739-748, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33416972

RESUMO

In the present study, twenty seven cellulose-degrading bacteria (CDB) were isolated from various organic manures and their cellulolytic activities were determined. The bacterial isolate CDB-26 showed the highest cellulolytic index, released 0.507 ± 0.025 mg/ml glucose and produced 0.196 ± 0.014 IU/ml cellulase enzyme under in vitro conditions. Biochemically, all the 27 isolates showed difference in the 6 biochemical tests performed. Further, all the 27 CDB isolates were subjected to various plant growth-promoting activities, and all CDB strains were positive for IAA production, GA3 production and siderophore production, whereas 19 strains were positive for ACC deaminase activity, 21 strains showed NH3 production and 19 strains were positive for HCN production. Out of 27 CDB isolates, 18 isolates were able to solubilize phosphate, 21 isolates were able to solubilize potash and 10 CDB isolates were found positive for silica solubilization. The molecular diversity among different CDB isolates was studied through ARDRA and demonstrated very high genetic diversity among these bacteria. The in vitro cellulose-degradation potential of these CDB isolates using vegetable waste as substrate were also assessed, and the 3 CDB isolates viz. Serratia surfactantfaciens (CDB-26), Stenotrophomonas rhizophila (CDB-16) and Pseudomonas fragi (CDB-5) showed the highest cellulose-degrading potential under in vitro conditions. Hence, the cellulolytic microbes isolated in the present study could be used for effective bioconversion of plant biomasses into enriched compost.


Assuntos
Celulose , Esterco , Desenvolvimento Vegetal , Stenotrophomonas
6.
Arch Microbiol ; 202(7): 1809-1816, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436039

RESUMO

Pigeon pea (Cajanus cajan (L.) Millspaugh) is among the top ten legumes grown globally not only having high tolerance to environmental stresses along, but also has the high biomass and productivity with optimal nutritional profiles. In the present study, 55 isolates of rhizobia were identified from 22 nodule samples of pigeon pea collected from semi-arid regions of India on the basis of morphological, biochemical, plant growth promoting activities and their ability to tolerate the stress conditions viz. pH, salt, temperature and drought stress. Amongst all the 55 isolates, 37 isolates showed effective nodulation under in vitro conditions in pigeon pea. Further, five isolates having multiple PGP activities and high in vitro symbiotic efficiency were subjected to 16S rRNA sequencing and confirmed their identities as Rhizobium, Mesorhizobium, Sinorhizobium sp. Further these 37 isolates were characterized at molecular level using ARDRA and revealed significant molecular diversity. Based on UPGMA clustering analysis, these isolates showed significant molecular diversity. The high degree of molecular diversity is due to mixed cropping of legumes in the region. The assessment of genetic diversity and molecular characterization of novel strains is a very important tool for the replacement of ineffective rhizobial strains with the efficient strains for the improvement in the nodulation and pigeon pea quality. The pigeon pea isolates with multiple PGPR activities could be further used for commercial production.


Assuntos
Cajanus/microbiologia , Clima Desértico , Variação Genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Índia , Mesorhizobium/classificação , Mesorhizobium/genética , Mesorhizobium/metabolismo , Pisum sativum , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Rhizobium/classificação , Rhizobium/genética , Rhizobium/metabolismo , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/metabolismo , Simbiose
7.
Curr Microbiol ; 77(8): 1550-1557, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32248283

RESUMO

Rhizobium are nitrogen-fixing bacteria which possess the nif gene that codes for the nitrogenase enzyme involved in the reduction of atmospheric dinitrogen (N2) to ammonia. Thirty rhizobial strains were identified from ten groundnut plant root nodules collected from semi-arid regions of Rajasthan, India. The isolates were initially identified on the basis of morphological, biochemical, and molecular characteristics. These rhizobium strains were further screened for plant growth promoting activities. Twenty-eight strains were able to produce indole acetic acid, nine strains could solubilize phosphate, and twenty-nine strains exhibited positive results for siderophore and ammonia production. All the bacterial strains were able to efficiently nodulate the groundnut under pot conditions and based on multiple PGP activities six strains were selected for field evaluation. Field experiments confirmed the effectiveness of these selected rhizobium strains resulted in significantly higher nodule number, nodule dry weight, grain yield, and yield components of inoculated plants. Inoculation of the rhizobium strain GN223 followed by GN221 resulted in high yield and field efficiency. Isolation of effective microbial strains is the prerequisite to increase the yield which is evident from the field data of the present study. Hence, these strains might serve as proficient inoculants.


Assuntos
Fabaceae/microbiologia , Rhizobium/classificação , Microbiologia do Solo , Inoculantes Agrícolas , Clima Desértico , Fabaceae/crescimento & desenvolvimento , Índia , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Simbiose
8.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26516166

RESUMO

Rapid identification of invasive species is crucial for deploying management strategies to prevent establishment. Recent Helicoverpa armigera (Hübner) invasions and subsequent establishment in South America has increased the risk of this species invading North America. Morphological similarities make differentiation of H. armigera from the native Helicoverpa zea (Boddie) difficult. Characteristics of adult male genitalia and nucleotide sequence differences in mitochondrial DNA are two of the currently available methods to differentiate these two species. However, current methods are likely too slow to be employed as rapid detection methods. In this study, conserved differences in the internal transcribed spacer 1 (ITS1) of the ribosomal RNA genes were used to develop species-specific oligonucleotide primers that amplified ITS1 fragments of 147 and 334 bp from H. armigera and H. zea, respectively. An amplicon (83 bp) from a conserved region of 18S ribosomal RNA subunit served as a positive control. Melting temperature differences in ITS1 amplicons yielded species-specific dissociation curves that could be used in high resolution melt analysis to differentiate the two Helicoverpa species. In addition, a rapid and inexpensive procedure for obtaining amplifiable genomic DNA from a small amount of tissue was identified. Under optimal conditions, the process was able to detect DNA from one H. armigera leg in a pool of 25 legs. The high resolution melt analysis combined with rapid DNA extraction could be used as an inexpensive method to genetically differentiate large numbers of H. armigera and H. zea using readily available reagents.


Assuntos
Mariposas/genética , RNA Ribossômico/genética , Animais , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Espécies Introduzidas , Dados de Sequência Molecular , Mariposas/classificação , Reação em Cadeia da Polimerase , Especificidade da Espécie
9.
Artigo em Inglês | MEDLINE | ID: mdl-38291210

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.

10.
Clin Pharmacol Drug Dev ; 13(6): 611-620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38389387

RESUMO

Omalizumab is an anti-IgE monoclonal antibody currently approved for the treatment of asthma, nasal polyps/chronic rhinosinusitis with nasal polyps, and chronic spontaneous urticaria. Omalizumab is available as an injection in a prefilled syringe (PFS) with a needle safety device (NSD). New product configurations were developed to reduce the number of injections per dose administration, improve patient convenience and treatment compliance. The objective of this randomized open-label 12-week study was to demonstrate pharmacokinetic bioequivalence between (1) new PFS with autoinjector (PFS-AI), (2) new PFS-NSD configuration, and (3) current PFS-NSD configuration. Each new configuration was considered bioequivalent to the current configuration if the confidence intervals (CIs) for the geometric mean ratios (GMR) were contained in the 0.80-1.25 range for maximum concentration (Cmax), area under the concentration-time curve until the last quantifiable measurement (AUClast), and AUC extrapolated to infinity (AUCinf). Safety was assessed throughout the study. In total, 193 healthy volunteers were randomized at 1:1:1 ratio to omalizumab 1×300 mg/2 mL via new PFS-AI (n = 66), omalizumab 1×300 mg/2 mL via new PFS-NSD (n = 64), or omalizumab 2×150 mg/1 mL via current PFS-NSD (n = 63). Comparing new PFS-AI versus current PFS-NSD, the GMRs were: Cmax, 1.085; AUClast, 1.093; AUCinf, 1.100. Comparing new PFS-NSD versus current PFS-NSD, the GMRs were: Cmax, 1.006; AUClast, 1.016; AUCinf, 1.027. The 95% CIs for all GMR parameters were contained within the 0.80-1.25 range. Safety findings were consistent with the known safety profile of omalizumab. Single-dose omalizumab administered as the new PFS-AI or new PFS-NSD was bioequivalent to the current PFS-NSD.


Assuntos
Área Sob a Curva , Voluntários Saudáveis , Omalizumab , Seringas , Equivalência Terapêutica , Humanos , Omalizumab/administração & dosagem , Omalizumab/farmacocinética , Omalizumab/efeitos adversos , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Agulhas , Injeções Subcutâneas
11.
Sci Rep ; 14(1): 6840, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514633

RESUMO

In the modern era, intensive agricultural practices such as agrochemicals are applied in excessive amounts to enhance agricultural production. However, imbalanced adoption of these chemicals has arisen in the dwindling of agriculture factor productivity and soil quality. To maintain soil fertility and production, these chemical fertilizers must be supplemented with organic inputs. Keeping this in the backdrop, a research trail was established during 2018-19 and 2019-20 years at Research Farm of Agriculture University, Kota, India. The treatment setup was comprised of 5 treatment modules viz., conservation tillage + organic management (CAOM), conservation tillage + chemical management (CACM), conventional tillage + chemical management (CTCM), conventional tillage + organic management (CTOM) and the package of practices (PoPs) with four replications. Results indicated that the highest organic carbon (0.68%), bacterial (29.11 × 107 cfu g-1), fungal (4.77 × 104 cfu g-1), actinomycetes populations (5.67 × 104 cfu g-1), acid phosphatase (44.1 µg g-1 h-1), urease (45.3 µg g-1 h-1) and dehydrogenase (23.3 µg triphenylformazan [TPF] g-1 h-1) activity in soil were found in the treatment of conservation organic system during both the years of study at each soil depth. In contrast to other parameters, the highest system productivity was observed with conservation chemical crop management approaches, with a soybean equivalent yield of 4615 kg ha-1 in a soybean-wheat system of production. Furthermore, the soil quality index (SQI) significantly varied from the lowest score (0.30) at 45-60 cm layer of soil in the package of practices to the highest score (0.92) at 0-15 cm layer of soil with regards to the conservation organic which shows, 206.67 percent enhancement through the soil profile of various crop management practices. The SQI variation from 0-15 to 45-60 cm soil depth was 130.0, 81.08, 60.0, 175.0 and 83.33 percent, respectively, for CAOM, CACM, CTCM, CTOM and PoPs. Amongst, different systems, the highest mean performance was noticed under the conservation organic systems for physical and biological properties. Hence, in line with the salient outcome, we may propose that the conservation chemical system needs to be followed to improve crop productivity, whereas, conservation organic seems a good option for soil health with long-term viability.


Assuntos
Glycine max , Solo , Humanos , Solo/química , Triticum , Produtos Agrícolas , Agricultura/métodos
12.
Financ Innov ; 9(1): 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691443

RESUMO

Central Asian Economies (CAEs) have diverse exchange rate policies. They have recorded higher volatility in the foreign exchange market since inception. High volatility of the transition era has drifted these economies towards partial dollarization. Monetary authorities in CAEs, (already have a challenge of maintaining monetary policy autonomy) have a gigantic task of price stability and stopping the spread of dollarization. This study is directed towards assessing the drivers and the determinants of foreign exchange market pressure in CAEs. The results, based on panel data analysis and the System GMM model, have provided useful insights about the exchange market pressure determinants particularly USD, Euro, Ruble, and Renminbi. The results show that China and Russia exchange market pressure has a negative effect on the exchange market pressure of CAEs. While the dollar index shows a positive impact on the exchange market pressure of CAEs. Overall, the findings imply that China and Russia currency appreciation results in a trade deficit across CAEs. The policy implication suggests that the floating exchange rate regime (inflation targeting regime) is not in favor of CAEs, and they must use managed-float to reduce their trade deficits.

13.
Microbiol Res ; 273: 127419, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276759

RESUMO

Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.


Assuntos
Poluentes Ambientais , Metais Pesados , Praguicidas , Poluentes do Solo , Humanos , Animais , Ecossistema , Metais Pesados/metabolismo , Bactérias/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental
14.
Microbiol Res ; 270: 127330, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36848699

RESUMO

Lignin is a significant renewable carbon source that needs to be exploited to manufacture bio-ethanol and chemical feedstocks. Lignin mimicking methylene blue (MB) dye is widely used in industries and causes water pollution. Using kraft lignin, methylene blue, and guaiacol as a full carbon source, 27 lignin-degrading bacteria (LDB) were isolated from 12 distinct traditional organic manures for the current investigation. The ligninolytic potential of 27 lignin-degrading bacteria was assessed by qualitative and quantitative assay. In a qualitative plate assay, the LDB-25 strain produced the largest zone, measuring 6.32 ± 0.297, on MSM-L-kraft lignin plates, while the LDB-23 strain produced the largest zone, measuring 3.44 ± 0.413, on MSM-L-Guaiacol plates. The LDB-9 strain in MSM-L-kraft lignin broth was able to decolorize lignin to a maximum of 38.327 ± 0.011% in a quantitative lignin degradation assay, which was later verified by FTIR assay. In contrast, LDB-20 produced the highest decolorization (49.633 ± 0.017%) in the MSM-L-Methylene blue broth. The highest manganese peroxidase enzyme activity, measuring 6322.314 ± 0.034 U L-1, was found in the LDB-25 strain, while the highest laccase enzyme activity, measuring 1.5105 ± 0.017 U L-1, was found in the LDB-23 strain. A preliminary examination into the biodegradation of rice straw using effective LDB was carried out, and efficient lignin-degrading bacteria were identified using 16SrDNA sequencing. SEM investigations also supported lignin degradation. LDB-8 strain had the highest percentage of lignin degradation (52.86%), followed by LDB-25, LDB-20, and LDB-9. These lignin-degrading bacteria have the ability to significantly reduce lignin and lignin-analog environmental contaminants, therefore they can be further researched for effective bio-waste management mediated breakdown.


Assuntos
Poluentes Ambientais , Lignina/metabolismo , Biodegradação Ambiental , Azul de Metileno , Corantes/metabolismo , Bioprospecção , Bactérias/metabolismo , Lacase/metabolismo , Carbono , Guaiacol
15.
Plants (Basel) ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896118

RESUMO

Rice (Oryza sativa L.) is an important cereal crop worldwide due to its long domestication history. North-Eastern India (NEI) is one of the origins of indica rice and contains various native landraces that can withstand climatic changes. The present study compared NEI rice landraces to a check variety for phenological, morpho-physiological, and yield-associated traits under high temperatures (HTs) and elevated CO2 (eCO2) levels using molecular markers. The first experiment tested 75 rice landraces for HT tolerance. Seven better-performing landraces and the check variety (N22) were evaluated for the above traits in bioreactors for two years (2019 and 2020) under control (T1) and two stress treatments [mild stress or T2 (eCO2 550 ppm + 4 °C more than ambient temperature) and severe stress or T3 (eCO2 750 ppm + 6 °C more than ambient temperature)]. The findings showed that moderate stress (T2) improved plant height (PH), leaf number (LN), leaf area (LA), spikelets panicle-1 (S/P), thousand-grain weight (TGW), harvest index (HI), and grain production. HT and eCO2 in T3 significantly decreased all genotypes' metrics, including grain yield (GY). Pollen traits are strongly and positively associated with spikelet fertility at maturity and GY under stress conditions. Shoot biomass positively affected yield-associated traits including S/P, TGW, HI, and GY. This study recorded an average reduction of 8.09% GY across two seasons in response to the conditions simulated in T3. Overall, two landraces-Kohima special and Lisem-were found to be more responsive compared to other the landraces as well as N22 under stress conditions, with a higher yield and biomass increment. SCoT-marker-assisted genotyping amplified 77 alleles, 55 of which were polymorphic, with polymorphism information content (PIC) values from 0.22 to 0.67. The study reveals genetic variation among the rice lines and supports Kohima Special and Lisem's close relationship. These two better-performing rice landraces are useful pre-breeding resources for future rice-breeding programs to increase stress tolerance, especially to HT and high eCO2 levels under changing climatic situations.

16.
Front Chem ; 11: 1154128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090246

RESUMO

Copper oxide nanoparticles (CuO-NPs) have piqued the interest of agricultural researchers due to their potential application as fungicides, insecticides, and fertilizers. The Serratia sp. ZTB29 strain, which has the NCBI accession number MK773873, was a novel isolate used in this investigation that produced CuO-NPs. This strain can survive concentrations of copper as high as 22.5 mM and can also remove copper by synthesizing pure CuO-NPs. UV-VIS spectroscopy, DLS, Zeta potential, FTIR, TEM, and XRD techniques were used to investigate the pure form of CuO-NPs. The synthesized CuO-NPs were crystalline in nature (average size of 22 nm) with a monoclinic phase according to the XRD pattern. CuO-NPs were found to be polydisperse, spherical, and agglomeration-free. According to TEM and DLS inspection, they ranged in size from 20 to 40 nm, with a typical particle size of 28 nm. CuO-NPs were extremely stable, as demonstrated by their zeta potential of -15.4 mV. The ester (C=O), carboxyl (C=O), amine (NH), thiol (S-H), hydroxyl (OH), alkyne (C-H), and aromatic amine (C-N) groups from bacterial secretion were primarily responsible for reduction and stabilization of CuO-NPs revealed in an FTIR analysis. CuO-NPs at concentrations of 50 µg mL-1 and 200 µg mL-1 displayed antibacterial and antifungal activity against the plant pathogenic bacteria Xanthomonas sp. and pathogenic fungus Alternaria sp., respectively. The results of this investigation support the claims that CuO-NPs can be used as an efficient antimicrobial agent and nano-fertilizer, since, compared to the control and higher concentrations of CuO-NPs (100 mg L-1) considerably improved the growth characteristics of maize plants.

17.
iScience ; 25(9): 104915, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060077

RESUMO

Tooth discoloration and plaque formation are serious issues for dental healthcare professionals across the world. Although traditional hydrogen peroxide-based cleaning methods are efficient, they can cause enamel demineralization, periodontal irritation, and toxicity. Also, these treatments are time-taking. Here, we present a noninvasive, safe, and simple tooth cleaning approach by using the piezoelectric phenomenon. After 6 h of vibrations, contaminated teeth can be significantly cleaned by the NaNbO3/ZnO binary nanocomposite. Moreover, the NaNbO3/ZnO binary nanocomposite-based piezocatalysis tooth cleaning procedure causes far less harm to enamel and biological cells in comparison to hydrogen peroxide-based cleaning methods. To evaluate its functionality, organic dyes were degraded by piezoelectric effect of NaNbO3/ZnO binary nanocomposite under ultrasonic irradiation. The piezoelectric potential of NaNbO3/ZnO was found to be 3.75 V. The binary nanocomposite's antibacterial activity was proven to be efficient against Escherichia coli with the inhibitory zone of 21 mm and complete removal of bacteria.

18.
ACS Omega ; 7(9): 7595-7605, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284758

RESUMO

In the present work, ferroelectric sodium niobate (NaNbO3) nanorods are formulated to attain photopiezocatalysis for water pollutant degradation and bacterial disinfection. NaNbO3 nanorods, integrating the advantages of photocatalysis (generation of free charge carriers) and piezocatalysis (separation of these charge carriers), possess synergistic effects, which results in a higher catalytic activity than photocatalysis and piezocatalysis alone. Active species that are involved in the catalytic process are found to be •O2 - < OH• < h+, indicating the significance of piezocatalysis and photocatalysis. The degradation efficiency of sodium niobate (NaNbO3) nanorods for Rhodamine B in the presence of both sunlight and ultrasonic vibration is 98.9% within 60 min (k = 7.6 × 10-2 min-1). The piezo potential generated by NaNbO3 nanorods was reported to be 16 V. The antibacterial activity of the produced sample was found to be effective against Escherichia coli. With inhibitory zones of 23 mm, sodium niobate has a greater antibacterial activity.

19.
J Popul Res (Canberra) ; 39(2): 257-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602856

RESUMO

The paper projects aggregate populations of six Pacific Island countries in both pre- and post-COVID19 scenarios using a Cohort Component Method for the period 2020-2060. It uses baseline indicators resembling China and Italy's experiences and finds that Pacific countries could experience a fatality rate between 5 and 20% due to the pandemic. It also finds that most Pacific Island countries would experience higher fatalities in the older age groups, consistent with what is being witnessed in other countries around the world. The analysis also shows that while the risk escalates for people over 50 years onward in all other sample countries, in Fiji, those in the age range of 60 years or more are at higher risk. The findings also indicate that for all countries, the fatality rate for 80 years and older is about 50%. The population projections show that Fiji will be most impacted, while others will experience around 2% initial population decline. The convergence to baseline is found to be slow (except for Tonga) in most Pacific countries. Consequently, the paper suggests a cautious approach in dealing with the current crisis.

20.
Eur J Dev Res ; 34(6): 2948-2969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194342

RESUMO

The previous studies of exports performance in Fiji were carried out at the aggregate level. We conduct a disaggregated analysis of exports of three major products, namely, sugar, tourism, and gold. This analysis is useful for developing sector-based export promotion policies. The long run as well as dynamic export demand functions are estimated at the aggregate and disaggregate levels. The results identify a number of factors such as trading partner income, relative prices, productivity shocks, natural disasters, political disturbances, and the exchange rate that affect the export demand for sugar, tourism, and gold, though not in the same way. For instance, tourism and sugar enjoy the highest income elasticity. Sugar export is adversely affected by natural calamities and political upheavals. The political upheavals also affect tourism adversely in Fiji. The exchange rate affects the export of sugar more than others. The idea that devaluation will promote exports in Fiji needs careful investigation because results show that this will happen with a high cost, i.e. 5% nominal devaluation will be required to increase real exports by 1%.


Les études précédentes sur la performance des exportations aux Fidji ont été réalisées au niveau global. Nous effectuons une analyse désagrégée des exportations de trois produits principaux, à savoir le sucre, le tourisme et l'or. Cette analyse est utile pour développer des politiques sectorielles de promotion des exportations. Nous estimons au niveau global et au niveau désagrégé des projections sur le long terme, ainsi que des fonctions dynamiques de demande d'exportation. Les résultats identifient un certain nombre de facteurs, tels que le revenu des partenaires commerciaux, les prix relatifs, les chocs de productivité, les catastrophes naturelles, les troubles politiques et les variations du taux de change, qui affectent la demande d'exportation pour le sucre, le tourisme et l'or, bien que l'impact soit différent. Par exemple, le tourisme et le sucre bénéficient de l'élasticité du revenu la plus élevée. L'exportation de sucre est affectée par les catastrophes naturelles et les bouleversements politiques. Les bouleversements politiques affectent également le tourisme dans les îles Fidji. Les variations du taux de change affectent l'exportation de sucre plus que les autres produits. Il faut soigneusement étudier l'idée selon laquelle, aux Fidji, la dévaluation monétaire va favoriser les exportations, car les résultats montrent que cela ne se produira qu'avec un coût élevé, c'est-à-dire qu'une dévaluation nominale de 5% sera nécessaire pour augmenter les exportations réelles de 1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA