Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852912

RESUMO

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Neuroproteção , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Diflunisal/uso terapêutico , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Salicilatos/uso terapêutico , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/sangue
2.
Cell ; 176(5): 1014-1025.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794773

RESUMO

Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , MicroRNAs/metabolismo , Óxido Nítrico/metabolismo , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroRNAs/fisiologia , Microbiota/genética , Óxido Nítrico/fisiologia , Processamento de Proteína Pós-Traducional/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética
3.
Mol Cell ; 70(3): 473-487.e6, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727618

RESUMO

Most G protein-coupled receptors (GPCRs) signal through both heterotrimeric G proteins and ß-arrestins (ßarr1 and ßarr2). Although synthetic ligands can elicit biased signaling by G protein- vis-à-vis ßarr-mediated transduction, endogenous mechanisms for biasing signaling remain elusive. Here we report that S-nitrosylation of a novel site within ßarr1/2 provides a general mechanism to bias ligand-induced signaling through GPCRs by selectively inhibiting ßarr-mediated transduction. Concomitantly, S-nitrosylation endows cytosolic ßarrs with receptor-independent function. Enhanced ßarr S-nitrosylation characterizes inflammation and aging as well as human and murine heart failure. In genetically engineered mice lacking ßarr2-Cys253 S-nitrosylation, heart failure is exacerbated in association with greatly compromised ß-adrenergic chronotropy and inotropy, reflecting ßarr-biased transduction and ß-adrenergic receptor downregulation. Thus, S-nitrosylation regulates ßarr function and, thereby, biases transduction through GPCRs, demonstrating a novel role for nitric oxide in cellular signaling with potentially broad implications for patho/physiological GPCR function, including a previously unrecognized role in heart failure.


Assuntos
Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/fisiologia , Feminino , Células HEK293 , Humanos , Inflamação/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo
4.
Immunity ; 45(5): 975-987, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27814941

RESUMO

Mononuclear phagocytes are a heterogeneous family that occupy all tissues and assume numerous roles to support tissue function and systemic homeostasis. Our ability to dissect the roles of individual subsets is limited by a lack of technologies that ablate gene function within specific mononuclear phagocyte sub-populations. Using Nr4a1-dependent Ly6Clow monocytes, we present a proof-of-principle approach that addresses these limitations. Combining ChIP-seq and molecular approaches we identified a single, conserved, sub-domain within the Nr4a1 enhancer that was essential for Ly6Clow monocyte development. Mice lacking this enhancer lacked Ly6Clow monocytes but retained Nr4a1 gene expression in macrophages during steady state and in response to LPS. Because Nr4a1 regulates inflammatory gene expression and differentiation of Ly6Clow monocytes, decoupling these processes allows Ly6Clow monocytes to be studied independently.


Assuntos
Diferenciação Celular/imunologia , Macrófagos/imunologia , Melanoma Experimental/imunologia , Monócitos/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Animais , Antígenos Ly/imunologia , Separação Celular , Imunoprecipitação da Cromatina , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Reação em Cadeia da Polimerase
5.
J Biol Chem ; 298(6): 101926, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413288

RESUMO

Skeletal muscle dynamically regulates systemic nutrient homeostasis through transcriptional adaptations to physiological cues. In response to changes in the metabolic environment (e.g., alterations in circulating glucose or lipid levels), networks of transcription factors and coregulators are recruited to specific genomic loci to fine-tune homeostatic gene regulation. Elucidating these mechanisms is of particular interest as these gene regulatory pathways can serve as potential targets to treat metabolic disease. The zinc-finger transcription factor Krüppel-like factor 15 (KLF15) is a critical regulator of metabolic homeostasis; however, its genome-wide distribution in skeletal muscle has not been previously identified. Here, we characterize the KLF15 cistrome in vivo in skeletal muscle and find that the majority of KLF15 binding is localized to distal intergenic regions and associated with genes related to circadian rhythmicity and lipid metabolism. We also identify critical interdependence between KLF15 and the nuclear receptor PPARδ in the regulation of lipid metabolic gene programs. We further demonstrate that KLF15 and PPARδ colocalize genome-wide, physically interact, and are dependent on one another to exert their transcriptional effects on target genes. These findings reveal that skeletal muscle KLF15 plays a critical role in metabolic adaptation through its direct actions on target genes and interactions with other nodal transcription factors such as PPARδ.


Assuntos
Fatores de Transcrição Kruppel-Like , Metabolismo dos Lipídeos , Músculo Esquelético , PPAR delta , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Músculo Esquelético/metabolismo , PPAR delta/genética , PPAR delta/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(44): 27667-27675, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087571

RESUMO

Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood-brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer's disease, Parkinson's disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Carbazóis/farmacologia , Cognição/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Carbazóis/uso terapêutico , Células Cultivadas , Doença Crônica/tratamento farmacológico , Cognição/fisiologia , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Microvasos/citologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , Sobreviventes
7.
Blood ; 133(7): 743-753, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30504459

RESUMO

Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby, prevents excessive coagulation without compromising hemostasis. Studies on tPA regulation have focused on its acute local release by vascular cells in response to injury or other stimuli. However, very little is known about sources, regulation, and fibrinolytic function of noninjury-induced systemic plasma tPA. We explore the role and regulation of hepatocyte-derived tPA as a source of basal plasma tPA activity and as a contributor to fibrinolysis after vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat Hepatocyte-DACH1-knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity, bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat Conversely, hepatocyte-ATF6-knockout mice show decreases in these parameters. The inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis after vascular injury.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Proteínas do Olho/fisiologia , Fibrinólise/fisiologia , Hepatócitos/patologia , Trombose/patologia , Ativador de Plasminogênio Tecidual/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(20): E4661-E4669, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712858

RESUMO

Nonischemic cardiomyopathy (NICM) resulting from long-standing hypertension, valvular disease, and genetic mutations is a major cause of heart failure worldwide. Recent observations suggest that myeloid cells can impact cardiac function, but the role of tissue-intrinsic vs. tissue-extrinsic myeloid cells in NICM remains poorly understood. Here, we show that cardiac resident macrophage proliferation occurs within the first week following pressure overload hypertrophy (POH; a model of heart failure) and is requisite for the heart's adaptive response. Mechanistically, we identify Kruppel-like factor 4 (KLF4) as a key transcription factor that regulates cardiac resident macrophage proliferation and angiogenic activities. Finally, we show that blood-borne macrophages recruited in late-phase POH are detrimental, and that blockade of their infiltration improves myocardial angiogenesis and preserves cardiac function. These observations demonstrate previously unappreciated temporal and spatial roles for resident and nonresident macrophages in the development of heart failure.


Assuntos
Cardiomegalia/patologia , Cardiomiopatias/patologia , Insuficiência Cardíaca/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/patologia , Miocárdio/patologia , Animais , Cardiomegalia/imunologia , Cardiomegalia/metabolismo , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo , Células Cultivadas , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Fator 4 Semelhante a Kruppel , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Miocárdio/imunologia , Miocárdio/metabolismo , Pressão
9.
Immunity ; 34(5): 715-28, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21565532

RESUMO

Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system.


Assuntos
Infecções Bacterianas/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , Choque Séptico/imunologia , Animais , Infecções Bacterianas/microbiologia , Linhagem Celular , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunidade Inata , Fatores de Transcrição Kruppel-Like/genética , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , NF-kappa B/imunologia
10.
J Am Soc Nephrol ; 30(10): 1925-1938, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337692

RESUMO

BACKGROUND: Polarized macrophage populations can orchestrate both inflammation of the kidney and tissue repair during CKD. Proinflammatory M1 macrophages initiate kidney injury, but mechanisms through which persistent M1-dependent kidney damage culminates in fibrosis require elucidation. Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor that suppresses inflammatory signals, is an essential regulator of macrophage polarization in adipose tissues, but the effect of myeloid KLF4 on CKD progression is unknown. METHODS: We used conditional mutant mice lacking KLF4 or TNFα (KLF4's downstream effector) selectively in myeloid cells to investigate macrophage KLF4's role in modulating CKD progression in two models of CKD that feature robust macrophage accumulation, nephrotoxic serum nephritis, and unilateral ureteral obstruction. RESULTS: In these murine CKD models, KLF4 deficiency in macrophages infiltrating the kidney augmented their M1 polarization and exacerbated glomerular matrix deposition and tubular epithelial damage. During the induced injury in these models, macrophage-specific KLF4 deletion also exacerbated kidney fibrosis, with increased levels of collagen 1 and α-smooth muscle actin in the injured kidney. CD11b+Ly6Chi myeloid cells isolated from injured kidneys expressed higher levels of TNFα mRNA versus wild-type controls. In turn, mice bearing macrophage-specific deletion of TNFα exhibited decreased glomerular and tubular damage and attenuated kidney fibrosis in the models. Moreover, treatment with the TNF receptor-1 inhibitor R-7050 during nephrotoxic serum nephritis reduced damage, fibrosis, and necroptosis in wild-type mice and mice with KLF4-deficient macrophages, and abrogated the differences between the two groups in these parameters. CONCLUSIONS: These data indicate that macrophage KLF4 ameliorates CKD by mitigating TNF-dependent injury and fibrosis.


Assuntos
Nefropatias/etiologia , Rim/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Macrófagos/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Fibrose/etiologia , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Indian J Crit Care Med ; 24(6): 477-479, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32863644

RESUMO

Accidental poisoning in children is very common, making up 10.9% of all unintentional injuries worldwide. Africa has the highest incidence of fatal poisonings worldwide, at 4 per 100,000. Poisoning with podophyllin is rare, with most cases documented around the 1970s to 1980s. Podophyllin is a resin mixture obtained from the dried Rhizome and roots of Podophyllin peltatum (North America) and Podopyllin emodi (India). Podophyllotoxin is the most toxic chemical present in the podophyllin, which is lipid soluble; so crosses the cell membrane easily and inhibits mitotic spindle formation. Both topical application and oral consumption can cause podophyllin poisoning. Neurotoxicity is the most serious effect along with bone marrow depression, gastrointestinal irritation, and hepatic and renal dysfunction. Management of podophyllin toxicity is mainly symptomatic, and no specific antidote exists. We report a case of a 2-year-old-year girl with accidental podophyllin poisoning, who presented with neurotoxicity followed by multiorgan dysfunction and then succumbed. Education of parents and healthcare workers on home safety still remains the mainstay of prevention. How to cite this article: Jain MK, Patnaik S, Rup AR, Gaurav A. A Rare Case of Podophyllin Poisoning: Early Intervention is Lifesaving. Indian J Crit Care Med 2020;24(6):477-479.

12.
Indian J Crit Care Med ; 24(12): 1223-1229, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33446977

RESUMO

OBJECTIVE: Posterior reversible encephalopathy syndrome (PRES) is a clinico-radiographic entity of heterogeneous etiologies having similar clinical and neuroimaging features. Pediatric data are sparse, making early diagnosis challenging, which needs a high index of suspicion. So, we conducted this study to evaluate clinico-radiological features, associated risk factors, etiology, and outcome in children. MATERIALS AND METHODS: This is a retrospective case series of patients, diagnosed as having PRES and followed up at a tertiary care hospital in Eastern India between September 2016 and December 2019. RESULTS: Among 16 patients with a median age of 9.5 years [interquartile range (IQR) 8-13.75] and a male preponderance (75%), common underlying diseases were post-streptococcal glomerulonephritis (56.3%) and renovascular hypertension (12.5%). Acute elevation of blood pressure was found in all patients (n = 16). The neurological symptom was seizure (87.5%), mental changes (68.75%), headache (43.8%), vomiting (31.3%), and visual disturbances (31.3%). The most common triggering factor was hypertension (100%), use of mycophenolate mofetil and prednisolone (12.5%), and hemodialysis (12.5%). Anemia was present in 15 (93.4%) patients at the time of admission. All showed abnormal neuroimaging with 55% having atypical involvement. The most common site was the parietal-occipital cortex (88%), frontal and temporal lobe (44% cases each), and the cerebellum (13%). Clinical recovery was followed by a radiological resolution in all survived except in one, who developed visual impairment. CONCLUSION: Posterior reversible encephalopathy syndrome should be considered in the differential diagnosis of patients who present with acute neurological disturbances and underlying diseases such as renal disorders, vasculitis, malignancy, and use of immunosuppressant accompanied by hypertension. Early diagnosis and treatment of comorbid conditions are of paramount importance for the early reversal of the syndrome. HOW TO CITE THIS ARTICLE: Behera CK, Jain MK, Mishra R, Jena PK, Dash SK, Sahoo RK. Clinico-radiological Profile of Posterior Reversible Encephalopathy Syndrome and Its Associated Risk Factors in PICU: A Single-center Experience from a Tertiary Care Hospital in Bhubaneswar, Odisha. Indian J Crit Care Med 2020;24(12):1223-1229.

13.
J Cell Mol Med ; 23(2): 1386-1395, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506878

RESUMO

Krüppel-like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2-mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up-regulation of KLF2 and concomitant down-regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum-induced arthritic inflammation and joint destruction in mice in a dose-dependent manner. Finally, co-immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2-mediated regulation of K/BxN serum-induced arthritic inflammation.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Inibidores de Histona Desacetilases/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Diferenciação Celular , Feminino , Histona Desacetilases/química , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Células RAW 264.7
14.
Circ Res ; 120(2): 354-365, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27923814

RESUMO

RATIONALE: Endothelial-mesenchymal transition (EndoMT) is implicated in myofibroblast-like cell-mediated damage to the coronary arterial wall in acute Kawasaki disease (KD) patients, as evidenced by positive staining for connective tissue growth factor (CTGF) and EndoMT markers in KD autopsy tissues. However, little is known about the molecular basis of EndoMT involved in KD. OBJECTIVE: We investigated the microRNA (miRNA) regulation of CTGF and the consequent EndoMT in KD pathogenesis. As well, the modulation of this process by statin therapy was studied. METHODS AND RESULTS: Sera from healthy children and KD subjects were incubated with human umbilical vein endothelial cells. Cardiovascular disease-related miRNAs, CTGF, and EndoMT markers were quantified using reverse transcriptase quantitative polymerase chain reaction, ELISA, and Western blotting. Compared with healthy controls, human umbilical vein endothelial cell incubated with sera from acute KD patients had decreased miR-483, increased CTGF, and increased EndoMT markers. Bioinformatics analysis followed by functional validation demonstrated that Krüppel-like factor 4 (KLF4) transactivates miR-483, which in turn targets the 3' untranslated region of CTGF mRNA. Overexpression of KLF4 or pre-miR-483 suppressed, whereas knockdown of KLF4 or anti-miR-483 enhanced, CTGF expression in endothelial cells in vitro and in vivo. Furthermore, atorvastatin, currently being tested in a phase I/IIa clinical trial in KD children, induced KLF4-miR-483, which suppressed CTGF and EndoMT in endothelial cells. CONCLUSIONS: KD sera suppress the KLF4-miR-483 axis in endothelial cells, leading to increased expression of CTGF and induction of EndoMT. This detrimental process in the endothelium may contribute to coronary artery abnormalities in KD patients. Statin therapy may benefit acute KD patients, in part, through the restoration of KLF4-miR-483 expression. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01431105.


Assuntos
Atorvastatina/administração & dosagem , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Transição Epitelial-Mesenquimal/fisiologia , Marcação de Genes/métodos , MicroRNAs/biossíntese , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/terapia , Animais , Bovinos , Pré-Escolar , Fator de Crescimento do Tecido Conjuntivo/genética , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Lactente , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/administração & dosagem , MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/genética
15.
J Biol Chem ; 292(24): 10048-10060, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28432122

RESUMO

IFNs are effective in inhibiting angiogenesis in preclinical models and in treating several angioproliferative disorders. However, the detailed mechanisms of IFNα-mediated anti-angiogenesis are not completely understood. Stat1/2/3 and PML are IFNα downstream effectors and are pivotal regulators of angiogenesis. Here, we investigated PML's role in the regulation of Stat1/2/3 activity. In Pml knock-out (KO) mice, ablation of Pml largely reduces IFNα angiostatic ability in Matrigel plug assays. This suggested an essential role for PML in IFNα's anti-angiogenic function. We also demonstrated that PML shared a large cohort of regulatory genes with Stat1 and Stat3, indicating an important role of PML in regulating Stat1 and Stat3 activity. Using molecular tools and primary endothelial cells, we demonstrated that PML positively regulates Stat1 and Stat2 isgylation, a ubiquitination-like protein modification. Accordingly, manipulation of the isgylation system by knocking down USP18 altered IFNα-PML axis-mediated inhibition of endothelial cell migration and network formation. Furthermore, PML promotes turnover of nuclear Stat3, and knockdown of PML mitigates the effect of LLL12, a selective Stat3 inhibitor, on IFNα-mediated anti-angiogenic activity. Taken together, we elucidated an unappreciated mechanism in which PML, an IFNα-inducible effector, possess potent angiostatic activity, doing so in part by forming a positive feedforward loop with Stat1/2 and a negative feedback loop with Stat3. The interplay between PML, Stat1/Stat2, and Stat3 contributes to IFNα-mediated inhibition of angiogenesis, and disruption of this network results in aberrant IFNα signaling and altered angiostatic activity.


Assuntos
Endotélio Vascular/metabolismo , Interferon-alfa/metabolismo , Neovascularização Patológica/prevenção & controle , Proteína da Leucemia Promielocítica/metabolismo , Fator de Transcrição STAT1/agonistas , Fator de Transcrição STAT2/agonistas , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Linhagem Celular , Células Cultivadas , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interferon-alfa/genética , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Proteína da Leucemia Promielocítica/antagonistas & inibidores , Proteína da Leucemia Promielocítica/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
Circulation ; 136(14): 1315-1330, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28794002

RESUMO

BACKGROUND: Atherosclerosis is a multifaceted inflammatory disease involving cells in the vascular wall (eg, endothelial cells [ECs]), as well as circulating and resident immunogenic cells (eg, monocytes/macrophages). Acting as a ligand for liver X receptor (LXR), but an inhibitor of SREBP2 (sterol regulatory element-binding protein 2), 25-hydroxycholesterol, and its catalyzing enzyme cholesterol-25-hydroxylase (Ch25h) are important in regulating cellular inflammatory status and cholesterol biosynthesis in both ECs and monocytes/macrophages. METHODS: Bioinformatic analyses were used to investigate RNA-sequencing data to identify cholesterol oxidation and efflux genes regulated by Krüppel-like factor 4 (KLF4). In vitro experiments involving cultured ECs and macrophages and in vivo methods involving mice with Ch25h ablation were then used to explore the atheroprotective role of KLF4-Ch25h/LXR. RESULTS: Vasoprotective stimuli increased the expression of Ch25h and LXR via KLF4. The KLF4-Ch25h/LXR homeostatic axis functions through suppressing inflammation, evidenced by the reduction of inflammasome activity in ECs and the promotion of M1 to M2 phenotypic transition in macrophages. The increased atherosclerosis in apolipoprotein E-/-/Ch25h-/- mice further demonstrates the beneficial role of the KLF4-Ch25h/LXR axis in vascular function and disease. CONCLUSIONS: KLF4 transactivates Ch25h and LXR, thereby promoting the synergistic effects between ECs and macrophages to protect against atherosclerosis susceptibility.


Assuntos
Aterosclerose/etiologia , Expressão Gênica/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores X do Fígado/metabolismo , Animais , Humanos , Hidroxicolesteróis , Fator 4 Semelhante a Kruppel , Receptores X do Fígado/análise , Masculino , Camundongos
17.
Circulation ; 135(7): 683-699, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-27899394

RESUMO

BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.


Assuntos
Arritmias Cardíacas/prevenção & controle , MAP Quinase Quinase 7/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Epigênese Genética , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Miócitos Cardíacos/metabolismo , Ratos
18.
Pharmacol Res ; 130: 123-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288718

RESUMO

Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Ritmo Circadiano/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Animais , Jejum/metabolismo , Humanos , Músculo Estriado/metabolismo
19.
Nature ; 483(7387): 96-9, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22367544

RESUMO

Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure) or pattern (for example, Brugada's syndrome) of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.


Assuntos
Arritmias Cardíacas/fisiopatologia , Ritmo Circadiano/fisiologia , Sistema de Condução Cardíaco/fisiologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Células Cultivadas , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Ventrículos do Coração/citologia , Fatores de Transcrição Kruppel-Like , Proteínas Interatuantes com Canais de Kv/biossíntese , Proteínas Interatuantes com Canais de Kv/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Regiões Promotoras Genéticas/genética , Ratos , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Am J Respir Crit Care Med ; 195(5): 639-651, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27855271

RESUMO

RATIONALE: Acute respiratory distress syndrome (ARDS) is caused by widespread endothelial barrier disruption and uncontrolled cytokine storm. Genome-wide association studies (GWAS) have linked multiple genes to ARDS. Although mechanosensitive transcription factor Krüppel-like factor 2 (KLF2) is a major regulator of endothelial function, its role in regulating pulmonary vascular integrity in lung injury and ARDS-associated GWAS genes remains poorly understood. OBJECTIVES: To examine KLF2 expression in multiple animal models of acute lung injury and further elucidate the KLF2-mediated pathways involved in endothelial barrier disruption and cytokine storm in experimental lung injury. METHODS: Animal and in vitro models of acute lung injury were used to characterize KLF2 expression and its downstream effects responding to influenza A virus (A/WSN/33 [H1N1]), tumor necrosis factor-α, LPS, mechanical stretch/ventilation, or microvascular flow. KLF2 manipulation, permeability measurements, small GTPase activity, luciferase assays, chromatin immunoprecipitation assays, and network analyses were used to determine the mechanistic roles of KLF2 in regulating endothelial monolayer integrity, ARDS-associated GWAS genes, and lung pathophysiology. MEASUREMENTS AND MAIN RESULTS: KLF2 is significantly reduced in several animal models of acute lung injury. Microvascular endothelial KLF2 is significantly induced by capillary flow but reduced by pathologic cyclic stretch and inflammatory stimuli. KLF2 is a novel activator of small GTPase Ras-related C3 botulinum toxin substrate 1 by transcriptionally controlling Rap guanine nucleotide exchange factor 3/exchange factor directly activated by cyclic adenosine monophosphate, which maintains vascular integrity. KLF2 regulates multiple ARDS GWAS genes related to cytokine storm, oxidation, and coagulation in lung microvascular endothelium. KLF2 overexpression ameliorates LPS-induced lung injury in mice. CONCLUSIONS: Disruption of endothelial KLF2 results in dysregulation of lung microvascular homeostasis and contributes to lung pathology in ARDS.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA