Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826261

RESUMO

The Human BioMolecular Atlas Program (HuBMAP) aims to construct a reference 3D structural, cellular, and molecular atlas of the healthy adult human body. The HuBMAP Data Portal (https://portal.hubmapconsortium.org) serves experimental datasets and supports data processing, search, filtering, and visualization. The Human Reference Atlas (HRA) Portal (https://humanatlas.io) provides open access to atlas data, code, procedures, and instructional materials. Experts from more than 20 consortia are collaborating to construct the HRA's Common Coordinate Framework (CCF), knowledge graphs, and tools that describe the multiscale structure of the human body (from organs and tissues down to cells, genes, and biomarkers) and to use the HRA to understand changes that occur at each of these levels with aging, disease, and other perturbations. The 6th release of the HRA v2.0 covers 36 organs with 4,499 unique anatomical structures, 1,195 cell types, and 2,089 biomarkers (e.g., genes, proteins, lipids) linked to ontologies. In addition, three workflows were developed to map new experimental data into the HRA's CCF. This paper describes the HRA user stories, terminology, data formats, ontology validation, unified analysis workflows, user interfaces, instructional materials, application programming interface (APIs), flexible hybrid cloud infrastructure, and demonstrates first atlas usage applications and previews.

2.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711953

RESUMO

The development of a reference atlas of the healthy human body requires automated image segmentation of major anatomical structures across multiple organs based on spatial bioimages generated from various sources with differences in sample preparation. We present the setup and results of the "Hacking the Human Body" machine learning algorithm development competition hosted by the Human Biomolecular Atlas (HuBMAP) and the Human Protein Atlas (HPA) teams on the Kaggle platform. We showcase how 1,175 teams from 78 countries engaged in community- driven, open-science code development that resulted in machine learning models which successfully segment anatomical structures across five organs using histology images from two consortia and that will be productized in the HuBMAP data portal to process large datasets at scale in support of Human Reference Atlas construction. We discuss the benchmark data created for the competition, major challenges faced by the participants, and the winning models and strategies.

3.
Nat Commun ; 14(1): 4656, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537179

RESUMO

The development of a reference atlas of the healthy human body requires automated image segmentation of major anatomical structures across multiple organs based on spatial bioimages generated from various sources with differences in sample preparation. We present the setup and results of the Hacking the Human Body machine learning algorithm development competition hosted by the Human Biomolecular Atlas (HuBMAP) and the Human Protein Atlas (HPA) teams on the Kaggle platform. We create a dataset containing 880 histology images with 12,901 segmented structures, engaging 1175 teams from 78 countries in community-driven, open-science development of machine learning models. Tissue variations in the dataset pose a major challenge to the teams which they overcome by using color normalization techniques and combining vision transformers with convolutional models. The best model will be productized in the HuBMAP portal to process tissue image datasets at scale in support of Human Reference Atlas construction.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Processamento de Imagem Assistida por Computador/métodos
4.
Commun Biol ; 6(1): 717, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468557

RESUMO

The Human BioMolecular Atlas Program (HuBMAP) aims to compile a Human Reference Atlas (HRA) for the healthy adult body at the cellular level. Functional tissue units (FTUs), relevant for HRA construction, are of pathobiological significance. Manual segmentation of FTUs does not scale; highly accurate and performant, open-source machine-learning algorithms are needed. We designed and hosted a Kaggle competition that focused on development of such algorithms and 1200 teams from 60 countries participated. We present the competition outcomes and an expanded analysis of the winning algorithms on additional kidney and colon tissue data, and conduct a pilot study to understand spatial location and density of FTUs across the kidney. The top algorithm from the competition, Tom, outperforms other algorithms in the expanded study, while using fewer computational resources. Tom was added to the HuBMAP infrastructure to run kidney FTU segmentation at scale-showcasing the value of Kaggle competitions for advancing research.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Adulto , Humanos , Projetos Piloto , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA