Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(15): 4441-4455, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316347

RESUMO

Quantitative proteomics is a growing research area and one of the most important tools in the life sciences. Well-characterized and quantified protein standards are needed to achieve accurate and reliable results. However, only a limited number of sufficiently characterized protein standards are currently available. To fill this gap, a method for traceable protein quantification using sulfur isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was developed in this study. Gel filtration and membrane filtration were tested for the separation of non-protein-bound sulfur in the protein solution. Membrane filtration demonstrated a better performance due to the lower workload and the very low sulfur blanks of 11 ng, making it well suited for high-purity proteins such as NIST SRM 927, a bovine serum albumin (BSA). The method development was accomplished with NIST SRM 927e and a commercial avidin. The quantified mass fraction of NIST SRM 927e agreed very well with the certified value and showed similar uncertainties (3.6%) as established methods while requiring less sample preparation and no species-specific standards. Finally, the developed procedure was applied to the tau protein, which is a biomarker for a group of neurodegenerative diseases denoted "tauopathies" including, e.g., Alzheimer's disease and frontotemporal dementia. For the absolute quantification of tau in the brain of transgenic mice overexpressing human tau, a well-defined calibration standard was needed. Therefore, a pure tau solution was quantified, yielding a protein mass fraction of (0.328 ± 0.036) g/kg, which was confirmed by amino acid analysis.


Assuntos
Enxofre , Proteínas tau , Animais , Calibragem , Técnicas de Diluição do Indicador , Camundongos , Padrões de Referência
2.
Anal Chem ; 91(18): 11520-11528, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31378066

RESUMO

Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer.


Assuntos
Isótopos/análise , Análise Serial de Tecidos/métodos , Corantes/química , Ensaios de Triagem em Larga Escala , Humanos , Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Estudo de Prova de Conceito , Software , Células THP-1
3.
Anal Chem ; 91(18): 11514-11519, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429254

RESUMO

In the last decades, significant efforts have been made to investigate possible cytotoxic effects of metallic nanoparticles (NPs). Methodologies enabling precise information regarding uptake and intracellular distribution of NPs at the single cell level remain to be established. Mass cytometry (MC) has been developed for high-dimensional single cell analyses and is a promising tool to quantify NP-cell interactions. Here, we aim to establish a new MC-based quantification procedure to receive absolute numbers of NPs per single cell by using a calibration that considers the specific transmission efficiency (TE) of suspended NPs. The current MC-quantification strategy accept TE values of complementary metal solutions. In this study, we demonstrate the different transmission behavior of 50 nm silver NPs (AgNP) and silver nitrate solution. We have used identical AgNPs for calibration as for in vitro-differentiated macrophages (THP-1 cell line) in a time- and dose-dependent manner. Our quantification relies on silver intensities measuring AgNPs in the same detection mode as the cells. Results were comparable with the TE quantification strategy using AgNPs but differed when using ionic silver. Furthermore, intact and digested cell aliquots were measured to investigate the impact of MC sample processing on the amount of AgNPs/cell. Taken together, we have provided a MC-specific calibration procedure to precisely calculate absolute numbers of NPs per single cell. Combined with its unique feature of multiplexing up to 50 parameters, MC provides much more information on the single cell level than single cell-inductively coupled plasma mass spectrometry (SC-ICPMS) and, therefore, offers new opportunities in nanotoxicology.


Assuntos
Nanopartículas Metálicas/análise , Análise de Célula Única/métodos , Citometria de Fluxo/métodos , Humanos , Nanopartículas Metálicas/química , Prata/química , Células THP-1
4.
Anal Chem ; 91(15): 10197-10203, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264843

RESUMO

We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (10-15 g) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 µm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 µm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion.

5.
Chemistry ; 25(3): 759-763, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350473

RESUMO

Metal tags find application in a multitude of biomedical systems and the combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers an opportunity for multiplexing. To lay the foundation for an increase of the signal intensities in such processes, we herein present a general approach for efficient functionalization of a well-defined metal oxido cluster [Bi6 O4 (OH)4 (SO3 CF3 )6 (CH3 CN)6 ]⋅2 CH3 CN (1), which can be realized by selecting 7mer peptide sequences via combinatorial means from large one-bead one-compound peptide libraries. Selective cluster-binding peptide sequences (CBS) for 1 were discriminated from non-binders by treatment with H2 S gas to form the reduction product Bi2 S3 , clearly visible to the naked eye. Interactions were further confirmed by NMR experiments. Extension of a binding peptide with a maleimide linker (Mal) introduces the possibility to covalently attach thiol-bearing moieties such as biological probes and for their analysis the presence of the cluster instead of mononuclear entities should lead to an increase of signal intensities in LA-ICP-MS measurements. To prove this, CBS-Mal was covalently bound onto thiol-presenting glass substrates, which then captured 1 effectively, so that LA-ICP-MS measurements demonstrated drastic signal amplification compared to single lanthanide tags.

6.
Analyst ; 144(16): 4935-4942, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31313760

RESUMO

We investigated the penetration of silver nanoparticles (Ag NPs) into a three-dimensional in vitro tissue analog using NPs with various sizes and surface coatings, and with different incubation times. A high-resolution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) time-of-flight (TOF) instrument was applied for imaging the distributions of elements in thin sample sections (20 µm thick). A fibroblast multicellular spheroid (MCS) was selected as the model system and cultured for more than 8 days to produce a natural barrier formed by the extracellular matrix containing collagen. The MCS was then exposed for up to 48 h to one of four types of Ag NPs (∅ 5 nm citrate coated, ∅ 20 nm citrate coated, ∅ 20 nm polyvinylpyrrolidone coated, and ∅ 50 nm citrate coated). Imaging showed that the penetration pathway was strongly related to steric networks formed by collagen fibrils, and Ag NPs with a hydrodynamic diameter of more than 41 nm were completely trapped in an outer rim of the MCSs even after incubation for 48 h. In addition, we examined the impact of these NPs on essential elements (P, Fe, Cu, and Zn) in areas of Ag NP accumulation. We observed a linear increase at the sub-femtogram level in the total concentration of Cu (fg per pixel) in samples treated with small or large Ag NPs (∅ 5 nm or ∅ 50 nm) for 48 h.

7.
Anal Bioanal Chem ; 411(3): 559-564, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30109381

RESUMO

In this paper, we describe the labelling of antibodies by gold nanoparticles (AuNPs) with diameters of 10 and 60 nm with detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Additionally, the AuNPs labelling strategy is compared with commercially available labelling reagents based on MeCAT (metal coded affinity tagging). Proof of principle experiments based on dot blot experiments were performed. The two labelling methods investigated were compared by sensitivity and limit of detection (LOD). The absolute LODs achieved were in the range of tens of picograms for AuNP labelling compared to a few hundred picograms by the MeCAT labelling.


Assuntos
Anticorpos/química , Ouro/química , Imunoensaio/métodos , Lasers , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Especificidade de Anticorpos , Indicadores e Reagentes/química , Limite de Detecção , Estudo de Prova de Conceito
8.
Anal Bioanal Chem ; 411(3): 629-637, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456604

RESUMO

Drug biodistribution analyses can be considered a key issue in pharmaceutical discovery and development. Here, mass spectrometric imaging can be employed as a powerful tool to investigate distributions of drug compounds in biologically and medically relevant tissue sections. Both matrix-assisted laser desorption ionization-mass spectrometric imaging as molecular method and laser ablation inductively coupled plasma-mass spectrometric imaging as elemental detection method were applied to determine drug distributions in tissue thin sections. Several mouse organs including the heart, kidney, liver, and brain were analyzed with regard to distribution of Gadovist™, a gadolinium-based contrast agent already approved for clinical investigation. This work demonstrated the successful detection and localization of Gadovist™ in several organs. Furthermore, the results gave evidence that gadolinium-based contrast agents in general can be well analyzed by mass spectrometric imaging methods. In conclusion, the combined application of molecular and elemental mass spectrometry could complement each other and thus confirm analytical results or provide additional information.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Lasers , Espectrometria de Massas/métodos , Compostos Organometálicos/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Gadolínio/sangue , Rim/metabolismo , Fígado/metabolismo , Camundongos , Imagem Molecular , Miocárdio/metabolismo , Compostos Organometálicos/sangue , Distribuição Tecidual
9.
Anal Bioanal Chem ; 411(16): 3497-3506, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31025180

RESUMO

We have efficiently produced collagen-rich microstructures in fibroblast multicellular spheroids (MCSs) as a three-dimensional in vitro tissue analog to investigate silver (Ag) nanoparticle (NP) penetration. The MCS production was examined by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). MCSs were incubated with Ag NP suspensions with a concentration of 5 µg mL-1 for 24 h. For this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to visualize Ag NP localization quantitatively. Thin sections of MCSs were analyzed by LA-ICP-MS with a laser spot size of 8 µm to image distributions of 109Ag, 31P, 63Cu, 66Zn, and 79Br. A calibration using a NP suspension was applied to convert the measured Ag intensity into the number of NPs present. The determined numbers of NPs ranged from 30 to 7200 particles in an outer rim of MCS. The particle distribution was clearly correlated with the presence of 31P and 66Zn and was localized in the outer rim of proliferating cells with a width that was equal to about twice the diameter of single cells. Moreover, abundant collagens were found in the outer rim of MCSs. For only the highest seeding cell number, NPs were completely captured at the outer rim, in a natural barrier reducing particle transport, whereas Eosin (79Br) used as a probe of small molecules penetrated into the core of MCSs already after 1 min of exposure. Graphical abstract Fibroblast MCS could build up the barrier only for nanoparticles.


Assuntos
Colágeno/metabolismo , Lasers , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Esferoides Celulares/metabolismo , Compostos de Anilina/química , Animais , Calibragem , Fibroblastos/metabolismo , Indóis/química , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Prata/química
10.
Arch Toxicol ; 92(1): 121-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29273819

RESUMO

Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.


Assuntos
Exposição Ambiental/análise , Nanoestruturas/análise , Nanoestruturas/toxicidade , Medição de Risco/métodos , Administração Oral , Animais , Desinfetantes , Ecotoxicologia/métodos , Exposição Ambiental/efeitos adversos , Embalagem de Alimentos , Alemanha , Humanos , Indústrias/métodos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Legislação sobre Alimentos , Nanoestruturas/administração & dosagem , Nanoestruturas/normas , Opinião Pública
11.
Anal Bioanal Chem ; 409(14): 3667-3676, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28321504

RESUMO

Actual research demonstrates that LA-ICP-MS is capable of being used as an imaging tool with cellular resolution. The aim of this investigation was the method development for LA-ICP-MS to extend the versatility to quantitative and multiplexing imaging of single eukaryotic cells. For visualization of individual cells selected, lanthanide-labeled antibodies were optimized for immuno-imaging of single cells with LA-ICP-MS. The molar content of the artificial introduced labels per cell was quantified using self-made nitrocellulose-coated slides for matrix-matched calibration and calculated amounts were in the range of 3.1 to 17.8 atmol per cell. Furthermore, the quantification strategy allows a conversion of 2D intensity profiles based on counts per second (cps) to quantitative 2D profiles representing the molar amount of the artificial introduced elemental probes per pixel for each individual cell. Graphical abstract ᅟ.


Assuntos
Fibroblastos/citologia , Imuno-Histoquímica/métodos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Células 3T3 , Animais , Anticorpos/análise , Elementos da Série dos Lantanídeos/análise , Camundongos , Coloração e Rotulagem/métodos
12.
J Nanobiotechnology ; 15(1): 21, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327151

RESUMO

BACKGROUND: Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. RESULTS: We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 µg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. CONCLUSIONS: Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.


Assuntos
Macrófagos/metabolismo , Nanopartículas Metálicas/química , Prata/farmacocinética , Linhagem Celular , Tomografia com Microscopia Eletrônica , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Tamanho da Partícula
13.
Mikrochim Acta ; 185(1): 64, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594525

RESUMO

An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 µm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 µm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.


Assuntos
Ouro/química , Lasers , Espectrometria de Massas , Metalotioneína/metabolismo , Imagem Molecular/métodos , Nanoestruturas/química , Retina/metabolismo , Carbodi-Imidas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Retina/diagnóstico por imagem
14.
Analyst ; 141(17): 5096-106, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27353290

RESUMO

Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surface-enhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag-Magnetite and Au-Magnetite nanostructures that is very similar to that of other composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles.

15.
Anal Bioanal Chem ; 408(9): 2309-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825342

RESUMO

The study of the distribution of the cytostatic drugs cisplatin, carboplatin, and oxaliplatin along the kidney may help to understand their different nephrotoxic behavior. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) allows the acquisition of trace element images in biological tissues. However, results obtained are affected by several variations concerning the sample matrix and instrumental drifts. In this work, an internal standardization method based on printing an Ir-spiked ink onto the surface of the sample has been developed to evaluate the different distributions and accumulation levels of the aforementioned drugs along the kidney of a rat model. A conventional ink-jet printer was used to print fresh sagittal kidney tissue slices of 4 µm. A reproducible and homogenous deposition of the ink along the tissue was observed. The ink was partially absorbed on top of the tissue. Thus, this approach provides a pseudo-internal standardization, due to the fact that the ablation sample and internal standard take place subsequently and not simultaneously. A satisfactory normalization of LA-ICP-MS bioimages and therefore a reliable comparison of the kidney treated with different Pt-based drugs were achieved even for tissues analyzed on different days. Due to the complete ablation of the sample, the transport of the ablated internal standard and tissue to the inductively coupled plasma-mass spectrometry (ICP-MS) is practically taking place at the same time. Pt accumulation in the kidney was observed in accordance to the dosages administered for each drug. Although the accumulation rate of cisplatin and oxaliplatin is high in both cases, their Pt distributions differ. The strong nephrotoxicity observed for cisplatin and the absence of such side effect in the case of oxaliplatin could explain these distribution differences. The homogeneous distribution of oxaliplatin in the cortical and medullar areas could be related with its higher affinity for cellular transporters such as MATE2-k.


Assuntos
Carboplatina/toxicidade , Cisplatino/toxicidade , Tinta , Rim/efeitos dos fármacos , Compostos Organoplatínicos/toxicidade , Impressão , Animais , Carboplatina/metabolismo , Cisplatino/metabolismo , Rim/metabolismo , Compostos Organoplatínicos/metabolismo , Oxaliplatina , Ratos , Padrões de Referência
16.
J Nanobiotechnology ; 14(1): 50, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334629

RESUMO

BACKGROUND: Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). RESULTS: All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. CONCLUSIONS: Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization.


Assuntos
Nanopartículas/análise , Neurônios/efeitos dos fármacos , Prata/farmacocinética , Titânio/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Espectrometria de Massas/métodos , Camundongos , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Prata/análise , Prata/toxicidade , Titânio/análise , Titânio/toxicidade
17.
Anal Chem ; 87(17): 8687-94, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26211704

RESUMO

In this work, a routinely applicable approach is presented to characterize metal NPs. Individual droplets generated from a microdroplet generator (MDG) were merged into an aerosol generated by a pneumatic nebulizer (PN) and introduced into an ICPMS. The MDG offers high transport efficiency of individual and discrete droplets and was therefore used to establish a calibration function for mass quantification of NPs which were introduced through the PN following the single particle procedure as described elsewhere. The major advantages of such a combined configuration include fast processing of large sample volumes, fast exchanges of different sample matrixes, and the calibration of the NP signal using traceable elemental standards, thus avoiding the need to use NP reference materials or other, not always thoroughly characterized, commercially available NPs. The transport efficiency of the sample introduction is calculated based on the fact that 100% of the calibrant reaches the plasma through the MDG, whereas for the PN a NP suspension containing a known number concentration is used. Alternatively, bulk analysis of the NP material allows transport efficiency determination without any additional information from reference NPs. With this method, we could determine the size of standard silver NPs at 60.4 ± 1.0 nm and 80.0 ± 1.4 nm, respectively, which agrees with the size ranges given by the supplier (60.8 ± 6.6 nm and 79.8 ± 5.4 nm). Furthermore, we were also able to determine the NPs number concentration of the sample (Ag/Au) with a deviation of 3.2% the expected value.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Nanopartículas Metálicas/análise , Nebulizadores e Vaporizadores , Composição de Medicamentos , Tamanho da Partícula , Suspensões , Fatores de Tempo
18.
Anal Bioanal Chem ; 407(9): 2415-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25486924

RESUMO

Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5-12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10-20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area.


Assuntos
Cromatografia Líquida/métodos , Meios de Contraste/análise , Gadolínio/análise , Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , Interações Hidrofóbicas e Hidrofílicas
19.
Anal Bioanal Chem ; 406(27): 6963-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25270864

RESUMO

The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of "multimodal spectroscopies."


Assuntos
Espectrometria de Massas/métodos , Análise de Célula Única
20.
Anal Bioanal Chem ; 406(27): 7003-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25120183

RESUMO

The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing.


Assuntos
Ouro/química , Nanopartículas Metálicas , Análise Espectral Raman/métodos , Células 3T3 , Animais , Espectrometria de Massas/métodos , Camundongos , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA