Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002314, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747886

RESUMO

The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.

2.
Cereb Cortex ; 33(4): 1476-1488, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441214

RESUMO

A major challenge in current cognitive neuroscience is how functional brain connectivity gives rise to human cognition. Functional magnetic resonance imaging (fMRI) describes brain connectivity based on cerebral oxygenation dynamics (hemodynamic connectivity), whereas [18F]-fluorodeoxyglucose functional positron emission tomography (FDG-fPET) describes brain connectivity based on cerebral glucose uptake (metabolic connectivity), each providing a unique characterization of the human brain. How these 2 modalities differ in their contribution to cognition and behavior is unclear. We used simultaneous resting-state FDG-fPET/fMRI to investigate how hemodynamic connectivity and metabolic connectivity relate to cognitive function by applying partial least squares analyses. Results revealed that although for both modalities the frontoparietal anatomical subdivisions related the strongest to cognition, using hemodynamic measures this network expressed executive functioning, episodic memory, and depression, whereas for metabolic measures this network exclusively expressed executive functioning. These findings demonstrate the unique advantages that simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural mechanisms that underpin cognition and highlights the importance of multimodality imaging in cognitive neuroscience research.


Assuntos
Conectoma , Humanos , Fluordesoxiglucose F18/metabolismo , Encéfalo , Cognição , Imagem Multimodal , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos
3.
Hum Brain Mapp ; 44(3): 1251-1277, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36269148

RESUMO

This review provides a qualitative and quantitative analysis of cerebral glucose metabolism in ageing. We undertook a systematic literature review followed by pooled effect size and activation likelihood estimates (ALE) meta-analyses. Studies were retrieved from PubMed following the PRISMA guidelines. After reviewing 635 records, 21 studies with 22 independent samples (n = 911 participants) were included in the pooled effect size analyses. Eight studies with eleven separate samples (n = 713 participants) were included in the ALE analyses. Pooled effect sizes showed significantly lower cerebral metabolic rates of glucose for older versus younger adults for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes. Among the sub-cortical structures, the caudate showed a lower metabolic rate among older adults. In sub-group analyses controlling for changes in brain volume or partial volume effects, the lower glucose metabolism among older adults in the frontal lobe remained significant, whereas confidence intervals crossed zero for the other lobes and structures. The ALE identified nine clusters of lower glucose metabolism among older adults, ranging from 200 to 2640 mm3 . The two largest clusters were in the left and right inferior frontal and superior temporal gyri and the insula. Clusters were also found in the inferior temporal junction, the anterior cingulate and caudate. Taken together, the results are consistent with research showing less efficient glucose metabolism in the ageing brain. The findings are discussed in the context of theories of cognitive ageing and are compared to those found in neurodegenerative disease.


Assuntos
Glucose , Doenças Neurodegenerativas , Idoso , Humanos , Envelhecimento , Encéfalo/fisiologia , Glucose/metabolismo , Funções Verossimilhança
4.
Psychophysiology ; 60(1): e14159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36106762

RESUMO

The literature on large-scale resting-state functional brain networks across the adult lifespan was systematically reviewed. Studies published between 1986 and July 2021 were retrieved from PubMed. After reviewing 2938 records, 144 studies were included. Results on 11 network measures were summarized and assessed for certainty of the evidence using a modified GRADE method. The evidence provides high certainty that older adults display reduced within-network and increased between-network functional connectivity. Older adults also show lower segregation, modularity, efficiency and hub function, and decreased lateralization and a posterior to anterior shift at rest. Higher-order functional networks reliably showed age differences, whereas primary sensory and motor networks showed more variable results. The inflection point for network changes is often the third or fourth decade of life. Age effects were found with moderate certainty for within- and between-network altered patterns and speed of dynamic connectivity. Research on within-subject bold variability and connectivity using glucose uptake provides low certainty of age differences but warrants further study. Taken together, these age-related changes may contribute to the cognitive decline often seen in older adults.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Idoso , Vias Neurais , Encéfalo/diagnóstico por imagem , Envelhecimento/psicologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
5.
Cereb Cortex ; 31(2): 1270-1283, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33067999

RESUMO

The maternal brain undergoes structural and functional plasticity during pregnancy and the postpartum period. Little is known about functional plasticity outside caregiving-specific contexts and whether changes persist across the lifespan. Structural neuroimaging studies suggest that parenthood may confer a protective effect against the aging process; however, it is unknown whether parenthood is associated with functional brain differences in late life. We examined the relationship between resting-state functional connectivity and number of children parented in 220 healthy older females (73.82 ± 3.53 years) and 252 healthy older males (73.95 ± 3.50 years). We compared the patterns of resting-state functional connectivity with 3 different models of age-related functional change to assess whether these effects may be functionally neuroprotective for the aging human parental brain. No relationship between functional connectivity and number of children was obtained for males. For females, we found widespread decreasing functional connectivity with increasing number of children parented, with increased segregation between networks, decreased connectivity between hemispheres, and decreased connectivity between anterior and posterior regions. The patterns of functional connectivity related to the number of children an older woman has parented were in the opposite direction to those usually associated with age-related cognitive decline, suggesting that motherhood may be beneficial for brain function in late life.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Comportamento Materno/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Idoso , Envelhecimento/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Mães , Neuroproteção/fisiologia , Pais , Gravidez
6.
Cereb Cortex ; 31(6): 2855-2867, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529320

RESUMO

Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the capacity to image 2 sources of energetic dynamics in the brain-glucose metabolism and the hemodynamic response. fMRI connectivity has been enormously useful for characterizing interactions between distributed brain networks in humans. Metabolic connectivity based on static FDG-PET has been proposed as a biomarker for neurological disease, but FDG-sPET cannot be used to estimate subject-level measures of "connectivity," only across-subject "covariance." Here, we applied high-temporal resolution constant infusion functional positron emission tomography (fPET) to measure subject-level metabolic connectivity simultaneously with fMRI connectivity. fPET metabolic connectivity was characterized by frontoparietal connectivity within and between hemispheres. fPET metabolic connectivity showed moderate similarity with fMRI primarily in superior cortex and frontoparietal regions. Significantly, fPET metabolic connectivity showed little similarity with FDG-sPET metabolic covariance, indicating that metabolic brain connectivity is a nonergodic process whereby individual brain connectivity cannot be inferred from group-level metabolic covariance. Our results highlight the complementary strengths of fPET and fMRI in measuring the intrinsic connectivity of the brain and open up the opportunity for novel fundamental studies of human brain connectivity as well as multimodality biomarkers of neurological diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Feminino , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Hemodinâmica/fisiologia , Humanos , Masculino , Imagem Multimodal/métodos , Descanso/fisiologia , Adulto Jovem
7.
Neuroimage ; 233: 117928, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716154

RESUMO

Functional positron emission tomography (fPET) imaging using continuous infusion of [18F]-fluorodeoxyglucose (FDG) is a novel neuroimaging technique to track dynamic glucose utilization in the brain. In comparison to conventional static or dynamic bolus PET, fPET maintains a sustained supply of glucose in the blood plasma which improves sensitivity to measure dynamic glucose changes in the brain, and enables mapping of dynamic brain activity in task-based and resting-state fPET studies. However, there is a trade-off between temporal resolution and spatial noise due to the low concentration of FDG and the limited sensitivity of multi-ring PET scanners. Images from fPET studies suffer from partial volume errors and residual scatter noise that may cause the cerebral metabolic functional maps to be biased. Gaussian smoothing filters used to denoise the fPET images are suboptimal, as they introduce additional partial volume errors. In this work, a post-processing framework based on a magnetic resonance (MR) Bowsher-like prior was used to improve the spatial and temporal signal to noise characteristics of the fPET images. The performance of the MR guided method was compared with conventional denosing methods using both simulated and in vivo task fPET datasets. The results demonstrate that the MR-guided fPET framework denoises the fPET images and improves the partial volume correction, consequently enhancing the sensitivity to identify brain activation, and improving the anatomical accuracy for mapping changes of brain metabolism in response to a visual stimulation task. The framework extends the use of functional PET to investigate the dynamics of brain metabolic responses for faster presentation of brain activation tasks, and for applications in low dose PET imaging.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos de Coortes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Estimulação Luminosa/métodos
8.
Neuroimage ; 226: 117603, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271271

RESUMO

Simultaneous magnetic resonance and positron emission tomography provides an opportunity to measure brain haemodynamics and metabolism in a single scan session, and to identify brain activations from multimodal measurements in response to external stimulation. However, there are few analysis methods available for jointly analysing the simultaneously acquired blood-oxygen-level dependant functional MRI (fMRI) and 18-F-fluorodeoxyglucose functional PET (fPET) datasets. In this work, we propose a new multimodality concatenated ICA (mcICA) method to identify joint fMRI-fPET brain activations in response to a visual stimulation task. The mcICA method produces a fused map from the multimodal datasets with equal contributions of information from both modalities, measured by entropy. We validated the method in silico, and applied it to an in vivo visual stimulation experiment. The mcICA method estimated the activated brain regions in the visual cortex modulated by both BOLD and FDG signals. The mcICA provides a fully data-driven analysis approach to analyse cerebral haemodynamic response and glucose uptake signals arising from exogenously induced neuronal activity.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
9.
Neuroimage ; 213: 116720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160950

RESUMO

Functional positron emission tomography (fPET) is a neuroimaging method involving continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of a PET examination. Compared with the conventional bolus administration of FDG in a static PET scan, which provides an average glucose uptake into the brain over an extended period of up to 30 â€‹min, fPET offers a significantly higher temporal resolution to study the dynamics of glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake and study its relationship with functional magnetic resonance imaging (fMRI). However, due to the unique characteristics of fPET signals, modelling of the fPET signal is a complex task and poses challenges for accurate interpretation of the results from fPET experiments. This study applied independent component analysis (ICA) to analyse resting state fPET data, and to compare the performance of ICA and the general linear model (GLM) for estimation of brain activation in response to tasks. The fPET signal characteristics were compared using GLM and ICA methods to model fPET data from a visual activation experiment. Our aim was to evaluate GLM and ICA methods for analysing task fPET datasets, and to apply ICA methods to the analysis of resting state fPET datasets. Using both simulation and in-vivo experimental datasets, we show that both ICA and GLM methods can successfully identify task related brain activation. We report fPET metabolic resting state brain networks revealed by application of the fPET ICA method to a cohort of 28 healthy subjects. Functional PET provides a unique method to map dynamic changes of glucose uptake in the resting human brain and in response to extrinsic stimulation.


Assuntos
Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Infusões Intravenosas , Masculino , Compostos Radiofarmacêuticos/administração & dosagem
10.
Neuroimage ; 221: 117196, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721510

RESUMO

Resting-state connectivity measures the temporal coherence of the spontaneous neural activity of spatially distinct regions, and is commonly measured using BOLD-fMRI. The BOLD response follows neuronal activity, when changes in the relative concentration of oxygenated and deoxygenated haemoglobin cause fluctuations in the MRI T2* signal. Since the BOLD signal detects changes in relative concentrations of oxy/deoxy-haemoglobin, individual differences in haemoglobin levels may influence the BOLD signal-to-noise ratio in a manner independent of the degree of neural activity. In this study, we examined whether group differences in haemoglobin may confound measures of functional connectivity. We investigated whether relationships between measures of functional connectivity and cognitive performance could be influenced by individual variability in haemoglobin. Finally, we mapped the neuroanatomical distribution of the influence of haemoglobin on functional connectivity to determine where group differences in functional connectivity are manifest. In a cohort of 518 healthy elderly subjects (259 men), each sex group was median-split into two groups with high and low haemoglobin concentration. Significant differences were obtained in functional connectivity between the high and low haemoglobin groups for both men and women (Cohen's d 0.17 and 0.03 for men and women respectively). The haemoglobin connectome in males showed a widespread systematic increase in functional connectivity correlation values, whilst the female connectome showed predominantly parietal and subcortical increases and temporo-parietal decreases. Despite the haemoglobin groups having no differences in cognitive measures, significant differences in the linear relationships between cognitive performance and functional connectivity were obtained for all 5 cognitive tests in males, and 4 out of 5 tests in females. Our findings confirm that individual variability in haemoglobin levels that give rise to group differences are an important confounding variable in BOLD-fMRI-based studies of functional connectivity. Controlling for haemoglobin variability as a potentially confounding variable is crucial to ensure the reproducibility of human brain connectome studies, especially in studies that compare groups of individuals, compare sexes, or examine connectivity-cognition relationships.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Conectoma , Hemoglobinas/metabolismo , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Humanos , Individualidade , Masculino , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Brain Cogn ; 141: 105560, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32179366

RESUMO

Premanifest Huntington's disease (pre-HD) individuals typically show increased task-related functional magnetic resonance imaging (fMRI), suggested to reflect compensatory strategies. Despite the evidence, no study has attempted to understand the compensatory process in light of 'formal' models of compensation. We used a quantitative model of compensation - the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH), to characterise compensation in pre-HD using fMRI. Pre-HD individuals (n = 15) and controls (n = 15) performed a modified stop-signal task that incremented in four levels of stop difficulty. Our results did not support the critical assumption of the CRUNCH model - controls did not show increased fMRI activity with increased level of stop difficulty; however, controls showed decreased fMRI activity with increased stop difficulty in right inferior frontal gyrus and right caudate nucleus. Relative to controls, pre-HD individuals showed increased fMRI activity in right inferior frontal gyrus and in right caudate nucleus at higher levels of stop difficulty, which is the opposite effect to that predicted by the model. Our findings suggest a compensatory process of the response inhibition network in pre-HD; however, the pattern of fMRI activity was not in the manner expected by CRUNCH.


Assuntos
Doença de Huntington , Encéfalo , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
12.
Neuroimage ; 189: 258-266, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615952

RESUMO

Studies of task-evoked brain activity are the cornerstone of cognitive neuroscience, and unravel the spatial and temporal brain dynamics of cognition in health and disease. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) is one of the most common methods of studying brain function in humans. BOLD-fMRI indirectly infers neuronal activity from regional changes in blood oxygenation and is not a quantitative metric of brain function. Regional variation in glucose metabolism, measured using [18-F] fluorodeoxyglucose positron emission tomography (FDG-PET), provides a more direct and interpretable measure of neuronal activity. However, while the temporal resolution of BOLD-fMRI is in the order of seconds, standard FDG-PET protocols provide a static snapshot of glucose metabolism. Here, we develop a novel experimental design for measurement of task-evoked changes in regional blood oxygenation and glucose metabolism with high temporal resolution. Over a 90-min simultaneous BOLD-fMRI/FDG-PET scan, [18F] FDG was constantly infused to 10 healthy volunteers, who viewed a flickering checkerboard presented in a hierarchical block design. Dynamic task-related changes in blood oxygenation and glucose metabolism were examined with temporal resolution of 2.5sec and 1-min, respectively. Task-related, temporally coherent brain networks of haemodynamic and metabolic connectivity were jointly coupled in the visual cortex, as expected. Results demonstrate that the hierarchical block design, together with the infusion FDG-PET technique, enabled both modalities to track task-related neural responses with high temporal resolution. The simultaneous MR-PET approach has the potential to provide unique insights into the dynamic haemodynamic and metabolic interactions that underlie cognition in health and disease.


Assuntos
Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Projetos de Pesquisa , Fatores de Tempo , Córtex Visual/metabolismo , Adulto Jovem
13.
Hum Brain Mapp ; 39(1): 354-368, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058355

RESUMO

Object-based visuospatial transformation is important for the ability to interact with the world and the people and objects within it. In this preliminary investigation, we hypothesized that object-based visuospatial transformation is a unitary process invoked regardless of current context and is localized to the intraparietal sulcus. Participants (n = 14) performed both antisaccade and mental rotation tasks while scanned using fMRI. A statistical conjunction confirmed that both tasks activated the intraparietal sulcus. Statistical parametric anatomical mapping determined that the statistical conjunction was localized to intraparietal sulcus subregions hIP2 and hIP3. A Gaussian naïve Bayes classifier confirmed that the conjunction in region hIP3 was indistinguishable between tasks. The results provide evidence that object-based visuospatial transformation is a domain-general process that is invoked regardless of current context. Our results are consistent with the modular model of the posterior parietal cortex and the distinct cytoarchitectonic, structural, and functional connectivity profiles of the subregions in the intraparietal sulcus. Hum Brain Mapp 39:354-368, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico/métodos , Feminino , Humanos , Imaginação/fisiologia , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tempo de Reação , Rotação , Movimentos Sacádicos/fisiologia , Adulto Jovem
14.
Hum Brain Mapp ; 39(12): 5126-5144, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076750

RESUMO

Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neuroimagem/métodos , Neurociências/métodos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Imagem Multimodal/normas , Neuroimagem/normas , Neurociências/normas , Tomografia por Emissão de Pósitrons/normas
16.
BMC Med Imaging ; 18(1): 41, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400875

RESUMO

BACKGROUND: Attenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images. METHODS: MR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis. Bone, air and soft tissue were segmented based on Gaussian Mixture Models with probabilistic tissue maps as a priori information. We present results for two approaches for bone attenuation coefficient assignments: one using a constant attenuation correction value; and another using an estimated continuous attenuation value based on a calibration fit. Quantitative comparisons were performed to evaluate the accuracy of the reconstructed PET images, with respect to a reference image reconstructed with manually segmented attenuation maps. RESULTS: The DICE coefficient analysis for the air and bone regions in the images demonstrated improvements compared to the UTE approach, and other state-of-the-art techniques. The most accurate whole brain and regional brain analyses were obtained using constant bone attenuation coefficient values. CONCLUSIONS: A novel attenuation correction method for PET data reconstruction is proposed. Analyses show improvements in the quantitative accuracy of the reconstructed PET images compared to other state-of-the-art AC methods for simultaneous PET/MR scanners. Further evaluation is needed with radiopharmaceuticals other than FDG, and in larger cohorts of participants.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Adulto , Algoritmos , Fluordesoxiglucose F18/administração & dosagem , Voluntários Saudáveis , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Adulto Jovem
18.
Sci Rep ; 14(1): 14574, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914735

RESUMO

Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.


Assuntos
Envelhecimento , Circulação Cerebrovascular , Glucose , Resistência à Insulina , Humanos , Idoso , Adulto , Circulação Cerebrovascular/fisiologia , Masculino , Feminino , Envelhecimento/metabolismo , Idoso de 80 Anos ou mais , Glucose/metabolismo , Adulto Jovem , Imageamento por Ressonância Magnética , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
19.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746272

RESUMO

The experience of parenthood can profoundly alter one's body, mind, and environment, yet we know little about the long-term associations between parenthood and brain function and aging in adulthood. Here, we investigate the link between number of children parented (parity) and age on brain function in 19,964 females and 17,607 males from the UK Biobank. In both females and males, increased parity was positively associated with functional connectivity, particularly within the somato/motor network. Critically, the spatial topography of parity-linked effects was inversely correlated with the impact of age on functional connectivity across the brain for both females and males, suggesting that a higher number of children is associated with patterns of brain function in the opposite direction to age-related alterations. These results indicate that the changes accompanying parenthood may confer benefits to brain health across the lifespan, highlighting the importance of future work to understand the associated mechanisms.

20.
Hum Brain Mapp ; 34(1): 12-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21998090

RESUMO

A large body of behavioural research has used the cued task-switching paradigm to characterize the nature of trial-by-trial preparatory adjustments that enable fluent task implementation when demands on cognitive flexibility are high. This work reviews the growing number of fMRI studies on the same topic, mostly focusing on the central hypothesis that preparatory adjustments should be indicated by enhanced prefrontal and parietal BOLD activation in task switch when compared with task repeat trials under conditions that enable advance task preparation. The evaluation of this straight-forward hypothesis reveals surprisingly heterogeneous results regarding both the precise localization and the very existence of switch-related preparatory activation. Explanations for these inconsistencies are considered on two levels. First, we discuss methodological issues regarding (i) the possible impact of different fMRI-specific experimental design modifications and (ii) statistical uncertainty in the context of massively multivariate imaging data. Second, we discuss explanations related to the multidimensional nature of task preparation itself. Specifically, the precise localization and the size of switch-related preparatory activation might depend on the differential interplay of hierarchical control via abstract task goals and attentional versus action-directed preparatory processes. We argue that different preparatory modes can be adopted relying either on advance goal activation alone or on the advance resolution of competition within action sets or attentional sets. Importantly, while either mode can result in a reduction of behavioral switch cost, only the latter two are supposed to be associated with enhanced switch versus repeat BOLD activation in prepared trial conditions.


Assuntos
Mapeamento Encefálico/métodos , Cognição/fisiologia , Imageamento por Ressonância Magnética , Desempenho Psicomotor/fisiologia , Atenção/fisiologia , Humanos , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA