Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458662

RESUMO

Alzheimer's disease is an emerging health disorder associated with cognitive decline and memory loss. In this study, six curcumin analogs (1a−1f) were synthesized and screened for in vitro cholinesterase inhibitory potential. On the basis of promising results, they were further investigated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined. The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while significantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel objects in NORT mice behavioral models. A molecular docking study using MOE software was used for validation of the inhibition of cholinesterase(s). It has been indicated from the current research work that the synthesized curcumin analogs enhanced memory functions in mice models and could be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their exact mechanism of action, further studies are suggested.


Assuntos
Curcumina , Escopolamina , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Colinérgicos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases , Modelos Animais de Doenças , Aprendizagem em Labirinto , Camundongos , Simulação de Acoplamento Molecular , Escopolamina/efeitos adversos
2.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652639

RESUMO

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


Assuntos
Catequina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas do Envelope Viral/genética , Antivirais/química , Antivirais/farmacologia , Catequina/química , Catequina/farmacologia , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Polifenóis/química , Polifenóis/farmacologia , Chá/química , Envelope Viral/química , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos
3.
BMC Genomics ; 21(1): 33, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924165

RESUMO

BACKGROUND: Spirochetal organisms of the Treponema genus are responsible for causing Treponematoses. Pathogenic treponemes is a Gram-negative, motile, spirochete pathogen that causes syphilis in human. Treponema pallidum subsp. endemicum (TEN) causes endemic syphilis (bejel); T. pallidum subsp. pallidum (TPA) causes venereal syphilis; T. pallidum subsp. pertenue (TPE) causes yaws; and T. pallidum subsp. Ccarateum causes pinta. Out of these four high morbidity diseases, venereal syphilis is mediated by sexual contact; the other three diseases are transmitted by close personal contact. The global distribution of syphilis is alarming and there is an increasing need of proper treatment and preventive measures. Unfortunately, effective measures are limited. RESULTS: Here, the genome sequences of 53 T. pallidum strains isolated from different parts of the world and a diverse range of hosts were comparatively analysed using pan-genomic strategy. Phylogenomic, pan-genomic, core genomic and singleton analysis disclosed the close connection among all strains of the pathogen T. pallidum, its clonal behaviour and showed increases in the sizes of the pan-genome. Based on the genome plasticity analysis of the subsets containing the subspecies T pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue, we found differences in the presence/absence of pathogenicity islands (PAIs) and genomic islands (GIs) on subsp.-based study. CONCLUSIONS: In summary, we identified four pathogenicity islands (PAIs), eight genomic islands (GIs) in subsp. pallidum, whereas subsp. endemicum has three PAIs and seven GIs and subsp. pertenue harbours three PAIs and eight GIs. Concerning the presence of genes in PAIs and GIs, we found some genes related to lipid and amino acid biosynthesis that were only present in the subsp. of T. pallidum, compared to T. pallidum subsp. endemicum and T. pallidum subsp. pertenue.


Assuntos
Sífilis/microbiologia , Treponema pallidum/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Humanos , Filogenia , Treponema pallidum/classificação
4.
Saudi Pharm J ; 28(12): 1580-1591, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424251

RESUMO

Zika virus (ZIKV) is one of the mosquito borne flavivirus with several outbreaks in past few years in tropical and subtropical regions. The non-structural proteins of flaviviruses are suitable active targets for inhibitory drugs due to their role in pathogenicity. In ZIKV, the non-structural protein 5 (NS5) RNA-Dependent RNA polymerase replicates its genome. Here we have performed virtual screening to identify suitable ligands that can potentially halt the ZIKV NS5 RNA dependent RNA polymerase (RdRp). During this process, we searched and screened a library of ligands against ZIKV NS5 RdRp. The selected ligands with significant binding energy and ligand-receptor interactions were further processed. Among the selected docked conformations, top five was further optimized at atomic level using molecular dynamic simulations followed by binding free energy calculations. The interactions of ligands with the target structure of ZIKV RdRp revealed that they form strong bonds within the active sites of the receptor molecule. The efficacy of these drugs against ZIKV can be further analyzed through in-vitro and in-vivo studies.

5.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216574

RESUMO

Sexually transmitted infections (STIs) are caused by a wide variety of bacteria, viruses, and parasites that are transmitted from one person to another primarily by vaginal, anal, or oral sexual contact. Syphilis is a serious disease caused by a sexually transmitted infection. Syphilis is caused by the bacterium Treponema pallidum subspecies pallidum. Treponema pallidum (T. pallidum) is a motile, gram-negative spirochete, which can be transmitted both sexually and from mother to child, and can invade virtually any organ or structure in the human body. The current worldwide prevalence of syphilis emphasizes the need for continued preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine targets and putative drugs against syphilis disease using reverse vaccinology and subtractive genomics. We compared 13 strains of T. pallidum using T. pallidum Nichols as the reference genome. Using an in silicoapproach, four pathogenic islands were detected in the genome of T. pallidum Nichols. We identified 15 putative antigenic proteins and sixdrug targets through reverse vaccinology and subtractive genomics, respectively, which can be used as candidate therapeutic targets in the future.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Simulação por Computador , Mapeamento de Epitopos , Sífilis/prevenção & controle , Treponema pallidum/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Mapeamento de Epitopos/métodos , Genoma Bacteriano , Ilhas Genômicas , Genômica/métodos , Modelos Moleculares , Relação Estrutura-Atividade , Treponema pallidum/genética
6.
BMC Microbiol ; 16: 100, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251711

RESUMO

BACKGROUND: Corynebacterium pseudotuberculosis can be classified into two biovars or biovars based on their nitrate-reducing ability. Strains isolated from sheep and goats show negative nitrate reduction and are termed biovar Ovis, while strains from horse and cattle exhibit positive nitrate reduction and are called biovar Equi. However, molecular evidence has not been established so far to understand this difference, specifically if these C. pseudotuberculosis strains are under an evolutionary process. RESULTS: The ERIC 1 + 2 Minimum-spanning tree from 367 strains of C. pseudotuberculosis showed that the great majority of biovar Ovis strains clustered together, but separately from biovar Equi strains that also clustered amongst themselves. Using evolutionarily conserved genes (rpoB, gapA, fusA, and rsmE) and their corresponding amino acid sequences, we analyzed the phylogenetic relationship among eighteen strains of C. pseudotuberculosis belonging to both biovars Ovis and Equi. Additionally, conserved point mutation based on structural variation analysis was also carried out to elucidate the genotype-phenotype correlations and speciation. We observed that the biovars are different at the molecular phylogenetic level and a probable anagenesis is occurring slowly within the species C. pseudotuberculosis. CONCLUSIONS: Taken together the results suggest that biovar Equi is forming the biovar Ovis. However, additional analyses using other genes and other bacterial strains are required to further support our anagenesis hypothesis in C. pseudotuberculosis.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium pseudotuberculosis/classificação , Corynebacterium pseudotuberculosis/genética , Análise de Sequência de DNA/métodos , Animais , Bovinos , Sequência Conservada , DNA Bacteriano/genética , Evolução Molecular , Cabras , Cavalos , Nitratos/metabolismo , Filogenia , Mutação Puntual , Ovinos
7.
Pak J Pharm Sci ; 29(6): 1913-1925, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28375106

RESUMO

The presented study comprises the synthesis of a new series of ethylated sulfonamides in which 1,4-benzodioxane moiety has been incorporated. The reaction of 1,4-benzodioxane-6-amine (1) with ethane sulfonyl chloride (2) yielded N-(2,3-dihydrobenzo[1,4]dioxin-6-yl)ethanesulfonamide (3), which further on treatment with various alkyl/aralkyl halides, 4a-r, in N,Nꞌ-dimethylformamide (DMF) and in the presence of lithium hydride (LiH) acting as a weak base and catalyst; yielded derivatives of N-alkyl/aralkyl substituted N-(2,3-dihydrobenzo[1,4]dioxin-6-yl)ethanesulfonamides (5a-r). The characterization of these derivatives was carried out by different spectroscopic techniques like infra red, proton-NMR and mass spectrometry; then screened against various enzymes i.e. acetylcholinesterase, butyrylcholinesterase, lipoxygenase and α-glucosidase enzymes and five different bacterial strains. The synthesized compounds were found to be good inhibitors of lipoxygenase but moderate inhibitors of AChE, BChE and α-glucosidase; whereas compounds 3, 5a, 5f, 5n and 5r were found good antibacterial compounds. The interaction between inhibitors and target enzymes (cholinestrases and lipoxygenase) was computationally observed which correlated with the experimental results.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Dioxanos/síntese química , Dioxanos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Alquilação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Tecnologia Farmacêutica/métodos
8.
BMC Genomics ; 15 Suppl 7: S3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573232

RESUMO

Corynebacterium pseudotuberculosis (Cp) is a pathogenic bacterium that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous to a broad spectrum of hosts, including ruminants, thereby threatening economic and dairy industries worldwide. Currently there is no effective drug or vaccine available against Cp. To identify new targets, we adopted a novel integrative strategy, which began with the prediction of the modelome (tridimensional protein structures for the proteome of an organism, generated through comparative modeling) for 15 previously sequenced C. pseudotuberculosis strains. This pan-modelomics approach identified a set of 331 conserved proteins having 95-100% intra-species sequence similarity. Next, we combined subtractive proteomics and modelomics to reveal a set of 10 Cp proteins, which may be essential for the bacteria. Of these, 4 proteins (tcsR, mtrA, nrdI, and ispH) were essential and non-host homologs (considering man, horse, cow and sheep as hosts) and satisfied all criteria of being putative targets. Additionally, we subjected these 4 proteins to virtual screening of a drug-like compound library. In all cases, molecules predicted to form favorable interactions and which showed high complementarity to the target were found among the top ranking compounds. The remaining 6 essential proteins (adk, gapA, glyA, fumC, gnd, and aspA) have homologs in the host proteomes. Their active site cavities were compared to the respective cavities in host proteins. We propose that some of these proteins can be selectively targeted using structure-based drug design approaches (SBDD). Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our modelome strategy is effective and can also be applicable to other pathogens.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Vacinas Bacterianas , Biologia Computacional , Corynebacterium pseudotuberculosis/efeitos dos fármacos , Corynebacterium pseudotuberculosis/genética , Sistemas de Liberação de Medicamentos , Proteoma/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Sequência Conservada , Corynebacterium pseudotuberculosis/metabolismo , Desenho de Fármacos , Genes Essenciais , Humanos , Software , Relação Estrutura-Atividade
9.
Mol Biol Rep ; 41(1): 337-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24234753

RESUMO

HCV infection in more than 200 million individuals worldwide is a principal health problem. Prior to the development of HCV protease inhibitor combination therapy, HCV infected patients were treated with pegylated interferon-α and ribavirin. The adverse side effects associated with this type of treatment may lead to the discontinuation of treatment in certain number of patients. Currently, the inhibitors of NS3/4A Protease were found promising candidates for the treatment of HCV infection. There are several inhibitors of HCV NS3/4A protease that are passing through clinical improvement showing good potency against HCV infections in a number of patients. To further recognize binding interactions and activity trend, the molecular docking studies were performed on a number of HCV NS3/4A protease ketoamide inhibitors via MOE docking protocol. The docking analysis resulted in the detection of important ligand interactions with respect to binding site of target protein and produced good correlation coefficient (r2 = 0.690) between docking score and biological activities. These molecular docking results should, in our view, contribute for further optimization of ketoamide derivatives as NS3/4A protease inhibitors.


Assuntos
Antivirais/química , Hepacivirus/enzimologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Amidas/química , Sítios de Ligação , Humanos , Ligação Proteica , Proteínas não Estruturais Virais/antagonistas & inibidores
10.
Bioorg Chem ; 57: 148-154, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25462991

RESUMO

A range of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a-4h) were synthesized and its biological inhibition towards α- and ß-glucosidases was studied. Most of the compounds demonstrate to be active against α-glucosidase, and quite inactive/completely inactive against ß-glucosidase. A number of compounds were found to be more active against α-glucosidase than the reference compound acarbose (IC50 38.25±0.12µM); being compound 4d with the p-hydroxy phenyl motive the most active (IC50 20.24±0.72µM). Molecular modeling studies show the interactions of compound 4d with the active site of target α-glucosidase kinase.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Piridinas/química , Piridinas/farmacologia , Humanos , Prunus/enzimologia , Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/química , beta-Glucosidase/metabolismo
11.
Pharm Biol ; 52(9): 1170-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24766364

RESUMO

CONTEXT: The three Pim serine/threonine kinases (Pim-1, Pim-2, and Pim-3) belong to a small family of kinases that regulate numerous signaling pathways fundamental to the development of tumors. Pim kinases' overexpression has been reported in numerous solid and hematological tumors and, in particular, prostate cancer (Pim-1). OBJECTIVES: This study investigated the binding modes of benzofuran-2-carboxlic acids against Pim-1 kinase, hence providing useful information for the active inhibition of it. MATERIALS AND METHODS: In present study, molecular docking approach via MOE-Dock program was applied to predict the binding interactions of some known Pim-1 kinase inhibitors. First validation of the docking protocol was carried out by calculating RMSD for the co-crystallized and docked ligands. Using the same protocol, all the compounds were docked into the active site of Pim-1 kinase. RESULTS: All the compounds showed significant interactions and good correlation with the experimental data. The results illustrate that compounds with optimum basicity and relevant distance between the acidic and basic groups showed optimum interactions with the active site residues of Pim-1 kinase. CONCLUSION: We hope that this study will be helpful in designing new, structurally diverse and more potent compounds for the active treatment of prostate cancer and other related diseases caused by deregulation of Pim-1 kinase.


Assuntos
Benzofuranos/farmacologia , Ácidos Carboxílicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Benzofuranos/química , Ácidos Carboxílicos/química , Cristalização , Desenho de Fármacos , Ligantes , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química
12.
Front Genet ; 15: 1361610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826807

RESUMO

Shigella dysenteriae has been recognized as the second most prevalent pathogen associated with diarrhea that contains blood, contributing to 12.9% of reported cases, and it is additionally responsible for approximately 200,000 deaths each year. Currently, there is no S. dysenteriae licensed vaccine. Multidrug resistance in all Shigella spp. is a growing concern. Current vaccines, such as O-polysaccharide (OPS) conjugates, are in clinical trials but are ineffective in children but protective in adults. Thus, innovative treatments and vaccines are needed to combat antibiotic resistance. In this study, we used immuno-informatics to design a new multiepitope vaccine and identified S. dysenteriae strain SD197's membrane protein targets using in-silico methods. The target protein was prioritized using membrane protein topology analysis to find membrane proteins. B and T-cell epitopes were predicted for vaccine formulation. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, a total of 8 B-cell epitopes, 12 MHC Class I epitopes, and 7 MHC Class II epitopes were identified for the Lipopolysaccharide export system permease protein LptF. Additionally, 17 MHC Class I epitopes and 14 MHC Class II epitopes were predicted for the Lipoprotein-releasing ABC transporter permease subunit LolE. These epitopes were selected and linked via KK, AAY, and GGGS linkers, respectively. To enhance the immunogenic response, RGD (arginine-glycine-aspartate) adjuvant was incorporated into the final vaccine construct. The refined vaccine structure exhibits a Ramachandran score of 91.5% and demonstrates stable interaction with TLR4. Normal Mode Analysis (NMA) reveals low eigenvalues (3.925996e-07), indicating steady and flexible molecular mobility of docked complexes. Codon optimization was carried out in an effective microbial expression system of the Escherichia coli K12 strain using the recombinant plasmid pET-28a (+). Finally, the entire in-silico analysis suggests that the suggested vaccine may induce a significant immune response against S. dysenteriae, making it a promising option for additional experimental trials.

13.
Biology (Basel) ; 13(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056703

RESUMO

Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. Streptococci are the most prevalent inhabitants of oral microbial communities, and are typical oral commensals found in the human oral cavity. These streptococci, along with many other oral microbes, produce multispecies biofilms that can attach to salivary pellicle components and other oral bacteria via adhesin proteins expressed on the cell surface. Antibiotics are effective against this bacterium, but resistance against antibodies is increasing. Therefore, a more effective treatment is needed. Vaccines offer a promising method for preventing this issue. This study generated a multi-epitope vaccine against Streptococcus gordonii by targeting the completely sequenced proteomes of five strains. The vaccine targets are identified using a pangenome and subtractive proteomic approach. In the present study, 13 complete strains out of 91 strains of S. gordonii are selected. The pangenomics results revealed that out of 2835 pan genes, 1225 are core genes. Out of these 1225 core genes, 643 identified as non-homologous proteins by subtractive proteomics. A total of 20 essential proteins are predicted from non-homologous proteins. Among these 20 essential proteins, only five are identified as surface proteins. The vaccine construct is designed based on selected B- and T-cell epitopes of the antigenic proteins with the help of linkers and adjuvants. The designed vaccine is docked against TLR2. The expression of the protein is determined using in silico gene cloning. Findings concluded that Vaccine I with adjuvant shows higher interactions with TLR2, suggesting that the vaccine has the ability to induce a humoral and cell-mediated response to treat and prevent infection; this makes it promising as a vaccine against infectious diseases caused by S. gordonii. Furthermore, validation of the vaccine construct is required by in vitro and in vivo trials to check its actual potency and safety for use to prevent infectious diseases caused by S. gordonii.

14.
Front Immunol ; 14: 1273838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045699

RESUMO

Dengue virus infection (DVI) is a mosquito-borne disease that can lead to serious morbidity and mortality. Dengue fever (DF) is a major public health concern that affects approximately 3.9 billion people each year globally. However, there is no vaccine or drug available to deal with DVI. Dengue virus consists of four distinct serotypes (DENV1-4), each raising a different immunological response. In the present study, we designed a tetravalent subunit multi-epitope vaccine, targeting proteins including the structural protein envelope domain III (EDIII), precursor membrane proteins (prM), and a non-structural protein (NS1) from each serotype by employing an immunoinformatic approach. Only conserved sequences obtained through a multiple sequence alignment were used for epitope mapping to ensure efficacy against all serotypes. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, overall, 11 B-cell epitopes, 10 HTL epitopes, and 10 CTL epitopes from EDIII, prM, and NS1 proteins targeting all serotypes were selected and joined via KK, AAY, and GGGS linkers, respectively. We incorporated a 45-amino-acid-long B-defensins adjuvant in the final vaccine construct for a better immunogenic response. The vaccine construct has an antigenic score of 0.79 via VaxiJen and is non-toxic and non-allergenic. Our refined vaccine structure has a Ramachandran score of 96.4%. The vaccine has shown stable interaction with TLR3, which has been validated by 50 ns of molecular dynamics (MD) simulation. Our findings propose that a designed multi-epitope vaccine has substantial potential to elicit a strong immune response against all dengue serotypes without causing any adverse effects. Furthermore, the proposed vaccine can be experimentally validated as a probable vaccine, suggesting it may serve as an effective preventative measure against dengue virus infection.


Assuntos
Vírus da Dengue , Dengue , Viroses , Animais , Humanos , Vacinas Combinadas , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito B , Dengue/prevenção & controle
15.
Artigo em Inglês | MEDLINE | ID: mdl-37436549

RESUMO

Cancer is a disease of mutation and lifestyle modifications. A large number of normal genes can transform normal cells to cancer cells due to their deregulations including overexpression and loss of expression. Signal transduction is a complex signaling process that involves multiple interactions and different functions. C-Jun N-terminal kinases (JNKs) is an important protein involved in signaling process. JNK mediated pathways can detect, integrate, and amplify various external signals that may cause alterations in gene expression, enzyme activities, and different cellular functions that affect cellular behavior like metabolism, proliferation, differentiation, and cell survival. In this study, we performed molecular docking protocol (MOE) to predict the binding interactions of some known anticancer 1-hydroxynaphthalene-2-carboxanilides candidates. A set of 10 active compounds was retrieved after initial screening on the basis of docking scores, binding energies, and number of interactions and was re-docked in the active site of JNK protein. The results were further validated through molecular dynamics simulation and MMPB/GBSA calculations. The active compounds 4p and 5 k were ranked on top. After computationally exploring interactions of 1-hydroxynaphthalene-2-carboxanilides with JNK protein, we believe compounds 4p and 5 k can serve as potential inhibitors of JNK protein. It is believed that the results of current research would help to develop novel and structurally diverse anticancer compounds that will be useful not only treat cancer but also for the medication for the other diseases caused by protein deregulation.

16.
Front Mol Biosci ; 10: 1098217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845543

RESUMO

Naegleria fowleri (N. fowleri) is a free-living thermophilic amoeba of fresh water and soil. The amoeba primarily feeds on bacteria but can be transmitted to humans upon contact with freshwater sources. Furthermore, this brain-eating amoeba enters the human body through the nose and travels to the brain to cause primary amebic meningoencephalitis (PAM). N. fowleri has been reported globally since its discovery in 1961. Recently a new strain of N. fowleri named Karachi-NF001 was found in a patient who had traveled from Riyadh, Saudi Arabia to Karachi in 2019. There were 15 unique genes identified in the genome of the Karachi-NF001 strain compared to all the previously reported strains of N. fowleri worldwide. Six of these genes encode well-known proteins. In this study, we performed in-silico analysis on 5 of these 6 proteins, namely, Rab family small GTPase, NADH dehydrogenase subunit 11, two Glutamine-rich protein 2 proteins (locus tags: 12086 and 12110), and Tigger transposable element-derived protein 1. We conducted homology modeling of these 5 proteins followed by their active site identification. These proteins were subjected to molecular docking against 105 anti-bacterial ligand compounds as potential drugs. Subsequently, the 10 best-docked compounds were determined for each protein and ranked according to the number of interactions and their binding energies. The highest binding energy was recorded for the two Glutamine-rich protein 2 proteins with different locus tags, and results have shown that the protein-inhibitor complex was stable throughout the simulation run. Moreover, future in-vitro studies could validate the findings of our in-silico analysis and identify potential therapeutic drugs against N. fowleri infections.

17.
Vaccines (Basel) ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112638

RESUMO

Rotavirus A is the most common cause of Acute Gastroenteritis globally among children <5 years of age. Due to a segmented genome, there is a high frequency of genetic reassortment and interspecies transmission which has resulted in the emergence of novel genotypes. There are concerns that monovalent (Rotarix: GlaxoSmithKline Biologicals, Rixensart, Belgium) and pentavalent (RotaTeq: MERCK & Co., Inc., Kenilworth, NJ, USA) vaccines may be less effective against non-vaccine strains, which clearly shows the demand for the design of a vaccine that is equally effective against all circulating genotypes. In the present study, a multivalent vaccine was designed from VP4 and VP7 proteins of RVA. Epitopes were screened for antigenicity, allergenicity, homology with humans and anti-inflammatory properties. The vaccine contains four B-cell, three CTL and three HTL epitopes joined via linkers and an N-terminal RGD motif adjuvant. The 3D structure was predicted and refined preceding its docking with integrin. Immune simulation displayed promising results both in Asia and worldwide. In the MD simulation, the RMSD value varied from 0.2 to 1.6 nm while the minimum integrin amino acid fluctuation (0.05-0.1 nm) was observed with its respective ligand. Codon optimization was performed with an adenovirus vector in a mammalian expression system. The population coverage analysis showed 99.0% and 98.47% in South Asia and worldwide, respectively. These computational findings show potential against all RVA genotypes; however, in-vitro/in-vivo screening is essential to devise a meticulous conclusion.

18.
Genet Vaccines Ther ; 10(1): 4, 2012 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716125

RESUMO

BACKGROUND: Gp41 is an envelope glycoprotein of human immune deficiency virus (HIV). HIV viral glycoprotein gp41, present in complex with gp120, assists the viral entry into host cell. Over eighty thousands individuals are HIV infected in Pakistan which makes about 0.2% of 38.6 million infected patients worldwide. Hence, HIV gp41 protein sequences isolated in Pakistan were analyzed for the CD4 and CD8 T cells binding epitopes. RESULTS: Immunoinformatics tools were applied for the study of variant region of HIV gp41envelope protein. The protein nature was analyzed using freely accessible computational software. About 90 gp41 sequences of Pakistani origin were aligned and variable and conserved regions were found. Four segments were found to be conserved in gp41 viral protein. A method was developed, involving the secondary structure, surface accessibility, hydrophobicity, antigenicity and molecular docking for the prediction and location of epitopes in the viral glycoprotein. Some highly conserved CD4 and CD8 binding epitopes were also found using multiple parameters. The predicted continuous epitopes mostly fall in the conserved region of 1-12; 14-22 and 25-46 and can be used as effective vaccine candidates. CONCLUSIONS: The study revealed potential HIV subtype a derived cytotoxic T cell (CTL) epitopes from viral proteome of Pakistani origin. The conserved epitopes are very useful for the diagnosis of the HIV 1 subtype a. This study will also help scientists to promote research for vaccine development against HIV 1 subtype a, isolated in Pakistan.

19.
J Arthropod Borne Dis ; 16(4): 262-277, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37159602

RESUMO

Background: Since 1952 when Zika Virus (ZIKV): a Flavivirus, was first discovered in humans, it has not received enough scientific research compared to some of the other members of the family Flaviviridae; like Dengue Virus (DENV). However, this has not stopped the virus from infecting the human population globally. In particular, the global spread of ZIKV has led to a surge in observational studies. Methods: Regarding recently published ZIKV-related literature, we are not aware of any reviews strictly focusing on ZIKV from the perspective of observational studies. Therefore, we reviewed recently published observational studies exploring the global spread of ZIKV and its association with Congenital ZIKV Infection (CZI) and clinical manifestations in adults. Online databases including google scholar, PubMed and Elsevier were used for retrieving relevant studies. Results: ZIKV cases have been reported in different parts of the world, with certain regions reporting more cases than the rest, like Brazil. ZIKV causes a wide spectrum of diseases and disorders including microcephaly, developmental disorders, and Guillain-Barre syndrome to name a few. Furthermore, CZI in neonates mainly manifests into neurological disorders and diseases, whereas ZIKV in adults' targets various organs. Conclusion: ZIKV poses a serious threat to human population and observational studies provide a different perspective on the damaging capabilities of ZIKV in real-life settings. Moreover, there are gaps in the literature regarding ZIKV-related-complications that future experimental studies need to address. These complications include in-utero transmission, Guillain-Barre syndrome, cross-reactivity, sexual transmission, along with its persistence in the male reproductive tract.

20.
Biomed Res Int ; 2022: 6197375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408282

RESUMO

Enterococcus faecalis is a Gram-positive bacterium that is normally found in the gastrointestinal tract of humans and animals. E. faecalis is an opportunistic pathogen that causes a number of invasive and noninvasive infections. The emergence of multidrug resistance and biofilm formation by the bacterium have rendered the treatment of E. faecalis infections very difficult. Due its high rate of resistance and biofilm formation, there are very few options of treatment. Therefore, the current study was designed to evaluate the antibacterial and biofilm activities of juglone derivatives such as 2-methoxy-6-acetyl-7-methyljuglone and 2-ethoxy-6-acetyl-7-methyljuglone against multidrug-resistant (MDR) and biofilm-producing strains of E. faecalis. Agar well diffusion and broth microdilution methods were used to determine the antibacterial activities. Biofilm attachment and preformed biofilm inhibition were determined using crystal violet staining assay. Both juglone derivatives displayed promising antibacterial and antibiofilm activities against E. faecalis. Among these compounds, 2-ethoxy-6-acetyl-7-methyljuglone possessed better inhibitory activity with minimum inhibitory concentration (MIC) of 9.7 ± 3 µM as compared to 2-methoxy-6-acetyl-7-methyljuglone (MIC, 19.5 ± 2 µM). Additionally, 2-ethoxy-6-acetyl-7-methyljuglone also showed stronger antibiofilm activity than 2-methoxy-6-acetyl-7-methyljuglone. Furthermore, both the ligand molecules were docked into the binding site of the enterococcal surface protein, and the results revealed that both the molecules are actively binding in the target site. Based on these findings, juglone derivatives may be considered useful for the treatment of E. faecalis infections; however, further studies are required to elucidate the mechanism of action.


Assuntos
Antibacterianos , Enterococcus faecalis , Humanos , Animais , Antibacterianos/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA