Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Epidemiol ; 179(4): 432-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24243740

RESUMO

Variants of inflammatory and immune response genes have been associated with adverse respiratory outcomes following exposure to air pollution. However, the genes involved and their associations are not well characterized, and there has been no systematic review. Thus, we conducted a review following the guidelines of the Human Genome Epidemiology Network. Six observational studies and 2 intervention studies with 14,903 participants were included (2001-2010). Six studies showed at least 1 significant gene-pollutant interaction. Meta-analysis was not possible due to variations in genes, pollutants, exposure estimates, and reported outcomes. The most commonly studied genes were tumor necrosis factor α (TNFA) (n = 6) and toll-like receptor 4 (TLR4) (n = 3). TNFA -308G>A modified the action of ozone and nitrogen dioxide on lung function, asthma risk, and symptoms; however, the direction of association varied between studies. The TLR4 single-nucleotide polymorphisms rs1927911, rs10759931, and rs6478317 modified the association of particulate matter and nitrogen dioxide with asthma. The transforming growth factor ß1 (TGFB1) polymorphism -509C>T also modified the association of pollutants with asthma. This review indicates that genes controlling innate immune recognition of foreign material (TLR4) and the subsequent inflammatory response (TGFB1, TLR4) modify the associations of exposure to air pollution with respiratory function. The associations observed have biological plausibility; however, larger studies with improved reporting are needed to confirm these findings.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Genes MHC da Classe II , Inflamação/genética , Doenças Respiratórias/genética , Humanos , Polimorfismo Genético , Respiração/genética , Respiração/imunologia , Doenças Respiratórias/induzido quimicamente , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
2.
Lancet Public Health ; 4(1): e28-e40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448150

RESUMO

BACKGROUND: Low emission zones (LEZ) are an increasingly common, but unevaluated, intervention aimed at improving urban air quality and public health. We investigated the impact of London's LEZ on air quality and children's respiratory health. METHODS: We did a sequential annual cross-sectional study of 2164 children aged 8-9 years attending primary schools between 2009-10 and 2013-14 in central London, UK, following the introduction of London's LEZ in February, 2008. We examined the association between modelled pollutant exposures of nitrogen oxides (including nitrogen dioxide [NO2]) and particulate matter with a diameter of less than 2·5 µm (PM2·5) and less than 10 µm (PM10) and lung function: postbronchodilator forced expiratory volume in 1 s (FEV1, primary outcome), forced vital capacity (FVC), and respiratory or allergic symptoms. We assigned annual exposures by each child's home and school address, as well as spatially resolved estimates for the 3 h (0600-0900 h), 24 h, and 7 days before each child's assessment, to isolate long-term from short-term effects. FINDINGS: The percentage of children living at addresses exceeding the EU limit value for annual NO2 (40 µg/m3) fell from 99% (444/450) in 2009 to 34% (150/441) in 2013. Over this period, we identified a reduction in NO2 at both roadside (median -1·35 µg/m3 per year; 95% CI -2·09 to -0·61; p=0·0004) and background locations (-0·97; -1·56 to -0·38; p=0·0013), but not for PM10. The effect on PM2·5 was equivocal. We found no association between postbronchodilator FEV1 and annual residential pollutant attributions. By contrast, FVC was inversely correlated with annual NO2 (-0·0023 L/µg per m3; -0·0044 to -0·0002; p=0·033) and PM10 (-0·0090 L/µg per m3; -0·0175 to -0·0005; p=0·038). INTERPRETATION: Within London's LEZ, a smaller lung volume in children was associated with higher annual air pollutant exposures. We found no evidence of a reduction in the proportion of children with small lungs over this period, despite small improvements in air quality in highly polluted urban areas during the implementation of London's LEZ. Interventions that deliver larger reductions in emissions might yield improvements in children's health. FUNDING: National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' National Health Service (NHS) Foundation Trust and King's College London, NHS Hackney, Lee Him donation, and Felicity Wilde Charitable Trust.


Assuntos
Poluição do Ar/estatística & dados numéricos , Transtornos Respiratórios/epidemiologia , Criança , Saúde da Criança/estatística & dados numéricos , Estudos Transversais , Exposição Ambiental , Humanos , Londres/epidemiologia , Saúde da População Urbana/estatística & dados numéricos
3.
Environ Int ; 96: 41-47, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591803

RESUMO

BACKGROUND: Short telomeres are associated with chronic disease and early mortality. Recent studies in adults suggest an association between telomere length and exposure to particulate matter, and that ethnicity may modify the relationship. However associations in children are unknown. OBJECTIVES: We examined associations between air pollution and telomere length in an ethnically diverse group of children exposed to high levels of traffic derived pollutants, particularly diesel exhaust, and to environmental tobacco smoke. METHODS: Oral DNA from 333 children (8-9years) participating in a study on air quality and respiratory health in 23 inner city London schools was analysed for relative telomere length using monochrome multiplex qPCR. Annual, weekly and daily exposures to nitrogen oxides and particulate matter were obtained from urban dispersion models (2008-10) and tobacco smoke by urinary cotinine. Ethnicity was assessed by self-report and continental ancestry by analysis of 28 random genomic markers. We used linear mixed effects models to examine associations with telomere length. RESULTS: Telomere length increased with increasing annual exposure to NOx (model coefficient 0.003, [0.001, 0.005], p<0.001), NO2 (0.009 [0.004, 0.015], p<0.001), PM2.5 (0.041, [0.020, 0.063], p<0.001) and PM10 (0.096, [0.044, 0.149], p<0.001). There was no association with environmental tobacco smoke. Telomere length was increased in children reporting black ethnicity (22% [95% CI 10%, 36%], p<0.001) CONCLUSIONS: Pollution exposure is associated with longer telomeres in children and genetic ancestry is an important determinant of telomere length. Further studies should investigate both short and long-term associations between pollutant exposure and telomeres in childhood and assess underlying mechanisms.


Assuntos
Poluição do Ar/efeitos adversos , Etnicidade/estatística & dados numéricos , Homeostase do Telômero/efeitos dos fármacos , Telômero/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Criança , Feminino , Humanos , Modelos Lineares , Londres , Masculino , Óxidos de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Homeostase do Telômero/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Emissões de Veículos/análise
4.
PLoS One ; 10(8): e0109121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295579

RESUMO

The adverse effects of traffic-related air pollution on children's respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8-9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00-1.02), NO2 (1.03, 1.00-1.06), PM10 (1.16, 1.04-1.28) and PM2.5 (1.38, 1.08-1.78), all per µg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.


Assuntos
Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Hipersensibilidade Respiratória/epidemiologia , Rinite Alérgica/epidemiologia , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Criança , Estudos Transversais , Exposição Ambiental/prevenção & controle , Monitoramento Ambiental , Feminino , Humanos , Modelos Logísticos , Londres/epidemiologia , Masculino , Prevalência , Hipersensibilidade Respiratória/diagnóstico , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/fisiopatologia , Rinite Alérgica/diagnóstico , Rinite Alérgica/etiologia , Rinite Alérgica/fisiopatologia , Emissões de Veículos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA