Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811809

RESUMO

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Assuntos
COVID-19/complicações , Cardiotônicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cardiopatias/tratamento farmacológico , Quinazolinonas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Cardiopatias/etiologia , Células-Tronco Embrionárias Humanas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
2.
Nat Rev Mol Cell Biol ; 22(11): 751-771, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34285405

RESUMO

Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.


Assuntos
Antígenos CD/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Insulina/genética , Receptor de Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/genética , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
3.
Cell ; 161(4): 948-948.e1, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957692

RESUMO

The insulin/IGF1signaling pathway (ISP) plays an essential role in long-term health. Some perturbations in this pathway are associated with diseases such as type 2 diabetes; other perturbations extend lifespan in worms, flies, and mice. The ISP regulates many biological processes, including energy storage, apoptosis, transcription, and cellular homeostasis. Such regulation involves precise rewiring of temporal events in protein phosphorylation networks. For an animated version of this Enhanced SnapShot, please visit http://www.cell.com/cell/enhanced/odonoghue.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteínas/metabolismo
4.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
Mol Cell Proteomics ; 22(3): 100508, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787876

RESUMO

White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue, which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome. Adipocytes from SAT (SAdi) were enriched in pathways related to mitochondrial complex I and beiging, whereas visceral adipocytes (VAdi) were enriched in structural proteins and positive regulators of mTOR presumably to promote nutrient storage and cellular expansion. This indicates that SAdi are geared toward higher catabolic activity, while VAdi are more suited for lipid storage. By comparing adipocytes from mice fed chow or Western diet (WD), we define a core adaptive proteomics signature consisting of increased extracellular matrix proteins and decreased fatty acid metabolism and mitochondrial Coenzyme Q biosynthesis. Relative to SAdi, VAdi displayed greater changes with WD including a pronounced decrease in mitochondrial proteins concomitant with upregulation of apoptotic signaling and decreased mitophagy, indicating pervasive mitochondrial stress. Furthermore, WD caused a reduction in lipid handling and glucose uptake pathways particularly in VAdi, consistent with adipocyte de-differentiation. By overlaying the proteomics changes with diet in whole adipose tissue and isolated adipocytes, we uncovered concordance between adipocytes and tissue only in the visceral adipose tissue, indicating a unique tissue-specific adaptation to sustained WD in SAT. Finally, an in-depth comparison of isolated adipocytes and 3T3-L1 proteomes revealed a high degree of overlap, supporting the utility of the 3T3-L1 adipocyte model. These deep proteomes provide an invaluable resource highlighting differences between white adipose depots that may fine-tune their unique functions and adaptation to an obesogenic environment.


Assuntos
Tecido Adiposo , Proteoma , Camundongos , Animais , Proteoma/metabolismo , Tecido Adiposo Branco , Adipócitos/metabolismo , Lipídeos
6.
Proc Natl Acad Sci U S A ; 119(19): e2119990119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522713

RESUMO

Over the years it has been established that SIN1, a key component of mTORC2, could interact with Ras family small GTPases through its Ras-binding domain (RBD). The physical association of Ras and SIN1/mTORC2 could potentially affect both mTORC2 and Ras-ERK pathways. To decipher the precise molecular mechanism of this interaction, we determined the high-resolution structures of HRas/KRas-SIN1 RBD complexes, showing the detailed interaction interface. Mutation of critical interface residues abolished Ras-SIN1 interaction and in SIN1 knockout cells we demonstrated that Ras-SIN1 association promotes SGK1 activity but inhibits insulin-induced ERK activation. With structural comparison and competition fluorescence resonance energy transfer (FRET) assays we showed that HRas-SIN1 RBD association is much weaker than HRas-Raf1 RBD but is slightly stronger than HRas-PI3K RBD interaction, providing a possible explanation for the different outcome of insulin or EGF stimulation. We also found that SIN1 isoform lacking the PH domain binds stronger to Ras than other longer isoforms and the PH domain appears to have an inhibitory effect on Ras-SIN1 binding. In addition, we uncovered a Ras dimerization interface that could be critical for Ras oligomerization. Our results advance our understanding of Ras-SIN1 association and crosstalk between growth factor-stimulated pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/metabolismo
7.
Am J Physiol Endocrinol Metab ; 326(5): E663-E672, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568150

RESUMO

Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.


Assuntos
Dieta Hiperlipídica , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina/fisiologia , Insulina/metabolismo , Insulina/sangue , Masculino , Dieta Ocidental , Glucose/metabolismo , Dieta com Restrição de Carboidratos , Camundongos Endogâmicos , Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética
8.
Int J Obes (Lond) ; 48(8): 1170-1179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961153

RESUMO

BACKGROUND: Weight loss can improve the metabolic complications of obesity. However, it is unclear whether insulin resistance persists despite weight loss and whether any protective benefits are preserved following weight regain (weight cycling). The impact of genetic background on weight cycling is undocumented. We aimed to investigate the effects of weight loss and weight cycling on metabolic outcomes and sought to clarify the role of genetics in this relationship. METHOD: Both C57BL/6 J and genetically heterogeneous Diversity Outbred Australia (DOz) mice were alternately fed high fat Western-style diet (WD) and a chow diet at 8-week intervals. Metabolic measures including body composition, glucose tolerance, pancreatic beta cell activity, liver lipid levels and adipose tissue insulin sensitivity were determined. RESULTS: After diet switch from WD (8-week) to chow (8-week), C57BL/6 J mice displayed a rapid normalisation of body weight, adiposity, hyperinsulinemia, liver lipid levels and glucose uptake into adipose tissue comparable to chow-fed controls. In response to the same dietary intervention, genetically diverse DOz mice conversely maintained significantly higher fat mass and insulin levels compared to chow-fed controls and exhibited much more profound interindividual variability than C57BL/6 J mice. Weight cycled (WC) animals were re-exposed to WD (8-week) and compared to age-matched controls fed 8-week WD for the first time (LOb). In C57BL/6 J but not DOz mice, WC animals had significantly higher blood insulin levels than LOb controls. All WC animals exhibited significantly greater beta cell activity than LOb controls despite similar fat mass, glucose tolerance, liver lipid levels and insulin-stimulated glucose uptake in adipose tissue. CONCLUSION: Following weight loss, metabolic outcomes return to baseline in C57BL/6 J mice with obesity. However, genetic diversity significantly impacts this response. A period of weight loss does not provide lasting benefits after weight regain, and weight cycling is detrimental and associated with hyperinsulinemia and elevated basal insulin secretion.


Assuntos
Variação Genética , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Animais , Camundongos , Obesidade/metabolismo , Obesidade/genética , Resistência à Insulina/fisiologia , Masculino , Redução de Peso/fisiologia , Dieta Hiperlipídica , Composição Corporal , Modelos Animais de Doenças , Dieta Ocidental/efeitos adversos , Tecido Adiposo/metabolismo , Aumento de Peso/fisiologia , Fígado/metabolismo
10.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552228

RESUMO

The mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) controls cell growth, proliferation, and metabolism in response to diverse stimuli. Two major parallel pathways are implicated in mTORC1 regulation including a growth factor-responsive pathway mediated via TSC2/Rheb and an amino acid-responsive pathway mediated via the Rag GTPases. Here, we identify and characterize three highly conserved growth factor-responsive phosphorylation sites on RagC, a component of the Rag heterodimer, implicating cross talk between amino acid and growth factor-mediated regulation of mTORC1. We find that RagC phosphorylation is associated with destabilization of mTORC1 and is essential for both growth factor and amino acid-induced mTORC1 activation. Functionally, RagC phosphorylation suppresses starvation-induced autophagy, and genetic studies in Drosophila reveal that RagC phosphorylation plays an essential role in regulation of cell growth. Finally, we identify mTORC1 as the upstream kinase of RagC on S21. Our data highlight the importance of RagC phosphorylation in its function and identify a previously unappreciated auto-regulatory mechanism of mTORC1 activity.


Assuntos
Aminoácidos/metabolismo , Drosophila melanogaster/metabolismo , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células HEK293 , Células HeLa , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/genética , Fosforilação , Homologia de Sequência , Transdução de Sinais
11.
EMBO J ; 38(24): e102578, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31381180

RESUMO

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteômica/métodos , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Drosophila , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Conformação Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
12.
Biochem J ; 479(11): 1237-1256, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35594055

RESUMO

Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3. Priming phosphorylation of murine TRARG1 at serine 84 allows for GSK3-directed phosphorylation at serines 72, 76 and 80. A similar pattern of phosphorylation was observed in human TRARG1, suggesting that our findings are translatable to human TRARG1. Pharmacological inhibition of GSK3 increased cell surface GLUT4 in cells stimulated with a submaximal insulin dose, and this was impaired following Trarg1 knockdown, suggesting that TRARG1 acts as a GSK3-mediated regulator in GLUT4 trafficking. These data place TRARG1 within the insulin signaling network and provide insights into how GSK3 regulates GLUT4 trafficking in adipocytes.


Assuntos
Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Adipócitos/metabolismo , Animais , Membrana Celular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo
13.
J Biol Chem ; 296: 100190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334886

RESUMO

Once internalized, receptors reach the sorting endosome and are either targeted for degradation or recycled to the plasma membrane, a process mediated at least in part by tubular recycling endosomes (TREs). TREs may be efficient for sorting owing to the ratio of large surface membrane area to luminal volume; following receptor segregation, TRE fission likely releases receptor-laden tubules and vesicles for recycling. Despite the importance of TRE networks for recycling, these unique structures remain poorly understood, and unresolved questions relate to their lipid and protein composition and biogenesis. Our previous studies have depicted the endocytic protein MICAL-L1 as an essential TRE constituent, and newer studies show a similar localization for the GTP-binding protein Rab10. We demonstrate that TREs are enriched in both phosphatidic acid (PA) and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), supporting the idea of MICAL-L1 recruitment by PA and Rab10 recruitment via PI(4,5)P2. Using siRNA knock-down, we demonstrate that Rab10-marked TREs remain prominent in cells upon MICAL-L1 or Syndapin2 depletion. However, depletion of Rab10 or its interaction partner, EHBP1, led to loss of MICAL-L1-marked TREs. We next used phospholipase D inhibitors to decrease PA synthesis, acutely disrupt TREs, and enable monitoring of TRE regeneration after inhibitor washout. Rab10 depletion prevented TRE regeneration, whereas MICAL-L1 knock-down did not. It is surprising that EHBP1 depletion did not affect TRE regeneration under these conditions. Overall, our study supports a primary role for Rab10 and the requirement for PA and PI(4,5)P2 in TRE biogenesis and regeneration, with Rab10 likely linking the sorting endosome to motor proteins and the microtubule network.


Assuntos
Endossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Membrana Celular/metabolismo , Células Cultivadas , Endocitose , Humanos , Proteínas de Transporte Vesicular/metabolismo
14.
PLoS Comput Biol ; 17(9): e1008513, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529665

RESUMO

The PI3K/MTOR signalling network regulates a broad array of critical cellular processes, including cell growth, metabolism and autophagy. The mechanistic target of rapamycin (MTOR) kinase functions as a core catalytic subunit in two physically and functionally distinct complexes mTORC1 and mTORC2, which also share other common components including MLST8 (also known as GßL) and DEPTOR. Despite intensive research, how mTORC1 and 2 assembly and activity are coordinated, and how they are functionally linked remain to be fully characterized. This is due in part to the complex network wiring, featuring multiple feedback loops and intricate post-translational modifications. Here, we integrate predictive network modelling, in vitro experiments and -omics data analysis to elucidate the emergent dynamic behaviour of the PI3K/MTOR network. We construct new mechanistic models that encapsulate critical mechanistic details, including mTORC1/2 coordination by MLST8 (de)ubiquitination and the Akt-to-mTORC2 positive feedback loop. Model simulations validated by experimental studies revealed a previously unknown biphasic, threshold-gated dependence of mTORC1 activity on the key mTORC2 subunit SIN1, which is robust against cell-to-cell variation in protein expression. In addition, our integrative analysis demonstrates that ubiquitination of MLST8, which is reversed by OTUD7B, is regulated by IRS1/2. Our results further support the essential role of MLST8 in enabling both mTORC1 and 2's activity and suggest MLST8 as a viable therapeutic target in breast cancer. Overall, our study reports a new mechanistic model of PI3K/MTOR signalling incorporating MLST8-mediated mTORC1/2 formation and unveils a novel regulatory linkage between mTORC1 and mTORC2.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Reprodutibilidade dos Testes , Transdução de Sinais , Homólogo LST8 da Proteína Associada a mTOR/metabolismo
15.
J Biol Chem ; 295(1): 99-110, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744882

RESUMO

Insulin action in adipose tissue is crucial for whole-body glucose homeostasis, with insulin resistance being a major risk factor for metabolic diseases such as type 2 diabetes. Recent studies have proposed mitochondrial oxidants as a unifying driver of adipose insulin resistance, serving as a signal of nutrient excess. However, neither the substrates for nor sites of oxidant production are known. Because insulin stimulates glucose utilization, we hypothesized that glucose oxidation would fuel respiration, in turn generating mitochondrial oxidants. This would impair insulin action, limiting further glucose uptake in a negative feedback loop of "glucose-dependent" insulin resistance. Using primary rat adipocytes and cultured 3T3-L1 adipocytes, we observed that insulin increased respiration, but notably this occurred independently of glucose supply. In contrast, glucose was required for insulin to increase mitochondrial oxidants. Despite rising to similar levels as when treated with other agents that cause insulin resistance, glucose-dependent mitochondrial oxidants failed to cause insulin resistance. Subsequent studies revealed a temporal relationship whereby mitochondrial oxidants needed to increase before the insulin stimulus to induce insulin resistance. Together, these data reveal that (a) adipocyte respiration is principally fueled from nonglucose sources; (b) there is a disconnect between respiration and oxidative stress, whereby mitochondrial oxidant levels do not rise with increased respiration unless glucose is present; and (c) mitochondrial oxidative stress must precede the insulin stimulus to cause insulin resistance, explaining why short-term, insulin-dependent glucose utilization does not promote insulin resistance. These data provide additional clues to mechanistically link nutrient excess to adipose insulin resistance.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Células 3T3 , Animais , Respiração Celular , Células Cultivadas , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
16.
J Biol Chem ; 295(1): 83-98, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31690627

RESUMO

Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release.


Assuntos
Adipócitos/metabolismo , Homeostase , Ácido Láctico/biossíntese , Células 3T3 , Animais , Células Cultivadas , Drosophila , Corpo Adiposo/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
17.
J Biol Chem ; 295(38): 13250-13266, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723868

RESUMO

Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride-glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism.


Assuntos
Adipócitos/metabolismo , Proteínas de Drosophila/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Lipogênese , Transdução de Sinais , Células 3T3-L1 , Animais , Drosophila melanogaster , Glicerofosfatos/metabolismo , Camundongos , NADP/metabolismo
18.
FASEB J ; 34(4): 5906-5916, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141134

RESUMO

The maintenance of muscle function is extremely important for whole body health and exercise is essential to this process. The ubiquitin-proteasome system (UPS) is required for muscle adaptation following exercise but little is known about acute posttranslational regulation and proteome remodeling during and after high-intensity exercise. Here, we used quantitative proteomics to study ubiquitin signaling dynamics in human skeletal muscle biopsies from healthy males before, during, and after a single bout of high-intensity exercise. Exercise resulted in a marked depletion of protein ubiquitylation in the vastus lateralis muscle consistent with proteasome activation. This was also associated with acute posttranslational modification of protein abundance. Integration of these data with phosphoproteomics identified co-regulated proximal modifications suggesting a cross talk between phosphorylation and ubiquitylation. We also identified additional protein modification cross talk and showed acute activation of protein NEDDylation. In vitro experiments revealed that cAMP-dependent activation of the proteasome requires NEDD8, an ubiquitin-like protein involved in protein NEDDylation, to maintain cellular protein ubiquitylation levels. Our data reveal the complexity of ubiquitin signaling and proteome remodeling in muscle during and after high-intensity exercise. We propose a model whereby exercise and the resulting cAMP signaling activate both the proteasome and ubiquitylation via NEDDylation to rapidly remove potentially damaged proteins.


Assuntos
Exercício Físico , Músculo Esquelético/metabolismo , Proteína NEDD8/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Ubiquitina/metabolismo , Ubiquitinação , Adulto , Células HEK293 , Humanos , Masculino , Proteína NEDD8/metabolismo , Fosforilação , Transdução de Sinais
19.
Mol Cell Proteomics ; 18(9): 1899-1915, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308252

RESUMO

Unbiased and sensitive quantification of low abundance small proteins in human plasma (e.g. hormones, immune factors, metabolic regulators) remains an unmet need. These small protein factors are typically analyzed individually and using antibodies that can lack specificity. Mass spectrometry (MS)-based proteomics has the potential to address these problems, however the analysis of plasma by MS is plagued by the extremely large dynamic range of this body fluid, with protein abundances spanning at least 13 orders of magnitude. Here we describe an enrichment assay (SPEA), that greatly simplifies the plasma dynamic range problem by enriching small-proteins of 2-10 kDa, enabling the rapid, specific and sensitive quantification of >100 small-protein factors in a single untargeted LC-MS/MS acquisition. Applying this method to perform deep-proteome profiling of human plasma we identify C5ORF46 as a previously uncharacterized human plasma protein. We further demonstrate the reproducibility of our workflow for low abundance protein analysis using a stable-isotope labeled protein standard of insulin spiked into human plasma. SPEA provides the ability to study numerous important hormones in a single rapid assay, which we applied to study the intermittent fasting response and observed several unexpected changes including decreased plasma abundance of the iron homeostasis regulator hepcidin.


Assuntos
Proteínas Sanguíneas/análise , Jejum/sangue , Peptídeos e Proteínas de Sinalização Intercelular/análise , Proteômica/métodos , Restrição Calórica , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática , Feminino , Hepcidinas/sangue , Humanos , Insulina/sangue , Marcação por Isótopo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Redução de Peso , Fluxo de Trabalho
20.
J Biol Chem ; 294(30): 11369-11381, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31175156

RESUMO

A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Animais , Transporte Biológico , Clonagem Molecular , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/metabolismo , Resistência à Insulina , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA