Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339216

RESUMO

Climate change is expected to intensify the occurrence of abiotic stress in plants, such as hypoxia and salt stresses, leading to the production of reactive oxygen species (ROS), which need to be effectively managed by various oxido-reductases encoded by the so-called ROS gene network. Here, we studied six oxido-reductases families in three Brassicaceae species, Arabidopsis thaliana as well as Nasturtium officinale and Eutrema salsugineum, which are adapted to hypoxia and salt stress, respectively. Using available and new genomic data, we performed a phylogenomic analysis and compared RNA-seq data to study genomic and transcriptomic adaptations. This comprehensive approach allowed for the gaining of insights into the impact of the adaptation to saline or hypoxia conditions on genome organization (gene gains and losses) and transcriptional regulation. Notably, the comparison of the N. officinale and E. salsugineum genomes to that of A. thaliana highlighted changes in the distribution of ohnologs and homologs, particularly affecting class III peroxidase genes (CIII Prxs). These changes were specific to each gene, to gene families subjected to duplication events and to each species, suggesting distinct evolutionary responses. The analysis of transcriptomic data has allowed for the identification of genes related to stress responses in A. thaliana, and, conversely, to adaptation in N. officinale and E. salsugineum.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Espécies Reativas de Oxigênio , Redes Reguladoras de Genes , Oxirredutases/genética , Hipóxia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778869

RESUMO

High-throughput data generated by new biotechnologies require specific and adapted statistical treatment in order to be efficiently used in biological studies. In this article, we propose a powerful framework to manage and analyse multi-omics heterogeneous data to carry out an integrative analysis. We have illustrated this using the mixOmics package for R software as it specifically addresses data integration issues. Our work also aims at applying the most recent functionalities of mixOmics to real datasets. Although multi-block integrative methodologies exist, we hope to encourage a more widespread use of such approaches in an operational framework by biologists. We have used natural populations of the model plant Arabidopsis thaliana in this work, but the framework proposed is not limited to this plant and can be deployed whatever the organisms of interest and the biological question may be. Four omics datasets (phenomics, metabolomics, cell wall proteomics and transcriptomics) were collected, analysed and integrated to study the cell wall plasticity of plants exposed to sub-optimal temperature growth conditions. The methodologies presented here start from basic univariate statistics leading to multi-block integration analysis. We have also highlighted the fact that each method, either unsupervised or supervised, is associated with one biological issue. Using this powerful framework enabled us to arrive at novel conclusions on the biological system, which would not have been possible using standard statistical approaches.


Assuntos
Biologia Computacional/métodos , Genômica , Metabolômica , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Software
3.
Biochem J ; 479(18): 1967-1984, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36062804

RESUMO

Rhamnogalacturonan-II (RG-II) is a complex pectic domain in plant primary cell walls. In vivo, most RG-II domains are covalently dimerised via borate diester bridges, essential for correct cell-wall assembly, but the dimerisation of pure RG-II monomers by boric acid in vitro is extremely slow. Cationic 'chaperones' can promote dimerisation, probably by overcoming the mutual repulsion between neighbouring anionic RG-II molecules. Highly effective artificial chaperones include Pb2+ and polyhistidine, but the proposed natural chaperones remained elusive. We have now tested cationic peptide fragments of several Arabidopsis thaliana arabinogalactan-proteins (AGPs) as candidates. Fragments of AGP17, 18, 19 and 31 were effective, typically at ∼25 µg/ml (9-19 µM), promoting the boron bridging of 16-20 µM monomeric RG-II at pH 4.8 in vitro. Native AGP31 glycoprotein was also effective, and hexahistidine was moderately so. All chaperones tested interacted reversibly with RG-II and were not consumed during the reaction; thus they acted catalytically, and may constitute the first reported boron-acting enzyme activity, an RG-II borate diesterase. Many of the peptide chaperones became less effective catalysts at higher concentration, which we interpret as due to the formation of RG-II-peptide complexes with a net positive charge, as mutually repulsive as negatively charged pure RG-II molecules. The four unique AGPs studied here may serve an enzymic role in the living plant cell, acting on RG-II within Golgi cisternae and/or in the apoplast after secretion. In this way, RG-II and specific AGPs may contribute to cell-wall assembly and hence plant cell expansion and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Boratos , Boro , Catálise , Cátions , Parede Celular , Chumbo , Mucoproteínas , Fragmentos de Peptídeos , Proteínas de Plantas , Ramnogalacturonanos
4.
Plant J ; 107(3): 893-908, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036648

RESUMO

Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.


Assuntos
Cálcio/metabolismo , Parede Celular/fisiologia , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Cálcio/química , Ciclopropanos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Tubo Polínico/metabolismo , Polinização/fisiologia , Transdução de Sinais , Transcriptoma
5.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457091

RESUMO

Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Bryopsida/metabolismo , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Proteômica
6.
Proteomics ; 21(11-12): e2000293, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891803

RESUMO

Arabidopsis has become a powerful model to study morphogenesis, plant growth, development but also plant response to environmental conditions. Over 1000 Arabidopsis genomes are available and show natural genetic variations. Among them, the main reference accessions Wassilewskija (Ws) and Columbia (Col-0), originally growing at contrasted altitudes and temperatures, are widely studied, but data contributing to their molecular phenotyping are still scarce. A global quantitative proteomics approach using isobaric stable isotope labeling (Tandem Mass Tags, TMT) was performed on Ws and Col-0. Plants have been hydroponically grown at 16 h/8 h (light/dark cycle) at 23°C day/19°C night for three weeks. A TMT labeling of the proteins extracted from their shoots has been performed and showed a differential pattern of protein abundance between them. These results have allowed identifying several proteins families possibly involved in the differential responses observed for Ws and Col-0 during plant development and upon environmental changes. In particular, Ws and Col-0 mainly differ in photosynthesis, cell wall-related proteins, plant defense/stress, ROS scavenging enzymes/redox homeostasis and DNA/RNA binding/transcription/translation/protein folding.


Assuntos
Arabidopsis , Ecótipo , Proteoma , Arabidopsis/genética , Proteômica
7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201710

RESUMO

High temperature stress leads to complex changes to plant functionality, which affects, i.a., the cell wall structure and the cell wall protein composition. In this study, the qualitative and quantitative changes in the cell wall proteome of Brachypodium distachyon leaves in response to high (40 °C) temperature stress were characterised. Using a proteomic analysis, 1533 non-redundant proteins were identified from which 338 cell wall proteins were distinguished. At a high temperature, we identified 46 differentially abundant proteins, and of these, 4 were over-accumulated and 42 were under-accumulated. The most significant changes were observed in the proteins acting on the cell wall polysaccharides, specifically, 2 over- and 12 under-accumulated proteins. Based on the qualitative analysis, one cell wall protein was identified that was uniquely present at 40 °C but was absent in the control and 24 proteins that were present in the control but were absent at 40 °C. Overall, the changes in the cell wall proteome at 40 °C suggest a lower protease activity, lignification and an expansion of the cell wall. These results offer a new insight into the changes in the cell wall proteome in response to high temperature.


Assuntos
Brachypodium/metabolismo , Parede Celular/metabolismo , Temperatura Alta , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Estresse Fisiológico , Brachypodium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteoma/análise , Proteômica
9.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003393

RESUMO

Exogenous low pH stress causes cell death in root cells, limiting root development, and agricultural production. Different lines of evidence suggested a relationship with cell wall (CW) remodeling players. We investigated whether class III peroxidase (CIII Prx) total activity, CIII Prx candidate gene expression, and reactive oxygen species (ROS) could modify CW structure during low pH-induced cell death in Arabidopsis thaliana roots. Wild-type roots displayed a good spatio-temporal correlation between the low pH-induced cell death and total CIII Prx activity in the early elongation (EZs), transition (TZs), and meristematic (MZs) zones. In situ mRNA hybridization showed that AtPrx62 transcripts accumulated only in roots treated at pH 4.6 in the same zones where cell death was induced. Furthermore, roots of the atprx62-1 knockout mutant showed decreased cell mortality under low pH compared to wild-type roots. Among the ROS, there was a drastic decrease in O2·- levels in the MZs of wild-type and atprx62-1 roots upon low pH stress. Together, our data demonstrate that AtPrx62 expression is induced by low pH and that the produced protein could positively regulate cell death. Whether the decrease in O2·- level is related to cell death induced upon low pH treatment remains to be elucidated.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Morte Celular/genética , Raízes de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Parede Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Concentração de Íons de Hidrogênio , Meristema/genética , Meristema/crescimento & desenvolvimento , Oxirredução/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260156

RESUMO

Plant cell wall proteins play major roles during plant development and in response to environmental cues. A bioinformatic search for functional domains has allowed identifying the PAC domain (Proline-rich, Arabinogalactan proteins, conserved Cysteines) in several proteins (PDPs) identified in cell wall proteomes. This domain is assumed to interact with pectic polysaccharides and O-glycans and to contribute to non-covalent molecular scaffolds facilitating the remodeling of polysaccharidic networks during rapid cell expansion. In this work, the characteristics of the PAC domain are described in detail, including six conserved Cys residues, their spacing, and the predicted secondary structures. Modeling has been performed based on the crystal structure of a Plantago lanceolata PAC domain. The presence of ß-sheets is assumed to ensure the correct folding of the PAC domain as a ß-barrel with loop regions. We show that PDPs are present in early divergent organisms from the green lineage and in all land plants. PAC domains are associated with other types of domains: Histidine-rich, extensin, Proline-rich, or yet uncharacterized. The earliest divergent organisms having PDPs are Bryophytes. Like the complexity of the cell walls, the number and complexity of PDPs steadily increase during the evolution of the green lineage. The association of PAC domains with other domains suggests a neo-functionalization and different types of interactions with cell wall polymers.


Assuntos
Parede Celular/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Biologia Computacional/métodos , Sequência Conservada , Cisteína/metabolismo , Bases de Dados de Proteínas , Evolução Molecular , Modelos Moleculares , Mucoproteínas/metabolismo , Filogenia , Prolina/metabolismo , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
12.
Plasmid ; 105: 102436, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31449836

RESUMO

Transient expression of proteins based on agro-infiltration techniques has proven very efficient and straightforward to study the intrinsic properties of proteins. The level of protein expression has been enhanced by the use of vector plasmids containing virus-derived sequences and the cloning step has been facilitated by recombination technologies. The pEAQ-HT-DEST series of vectors fulfilling these improvements are vectors of choice. However, they lack the possibility to directly and easily fuse the protein of interest to a fluorescent tag or to address it to the secretion pathway. In the present work we describe the production of 15 pEAQ-HT-DEST1-based plasmids designed to use the Gateway® cloning technology and to generate high levels of fluorescent fusion protein by agro-infiltration, in planta. This collection of plasmids includes binary vectors allowing N-terminal or C-terminal fusion to the bright tags EGFP or TagRFP for cytoplasmic accumulation or secretion and represents therefore a valuable tool for subcellular localization or biochemical studies. A viral protein, the blue fluorescent protein TagBFP, the green fluorescent protein variant T-Sapphire and an Arabidopsis protein were transiently expressed in N. benthamiana to demonstrate the potential of these vectors.


Assuntos
Vetores Genéticos/genética , Proteínas de Plantas/genética , Plasmídeos/genética , Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Fluorescência Verde/genética , Plantas Geneticamente Modificadas/genética
13.
Int J Mol Sci ; 21(1)2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905787

RESUMO

The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.


Assuntos
Parede Celular/metabolismo , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/metabolismo , Triticum/embriologia , Triticum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Grão Comestível/citologia , Grão Comestível/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Polissacarídeos/metabolismo
14.
Proteomics ; 18(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274249

RESUMO

By characterizing the cell wall proteomes of different sugarcane organs (leaves and stems) at two developmental stages (young vs mature/apical vs basal), it is possible to address unique characteristics in each of them. Four-month-old leaves show a higher proportion of oxido-reductases and proteins related to lipid metabolism (LM), besides a lower proportion of proteins acting on polysaccharides, in comparison to 4-month-old internodes. It is possible to note that sugarcane leaves and young stems have the highest LM rate than all species, which is assumed to be linked to cuticle formation. The data generated enrich the number of cell wall proteins (CWPs) identified in sugarcane, reaching 277. To our knowledge, sugarcane has now the second higher coverage of monocot CWP in plants.


Assuntos
Parede Celular/química , Folhas de Planta/citologia , Proteínas de Plantas/análise , Caules de Planta/citologia , Proteoma/metabolismo , Saccharum/citologia , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Saccharum/crescimento & desenvolvimento
15.
Proteomics ; 18(23): e1800286, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288912

RESUMO

The remodeling of cell wall polysaccharides is controlled by cell wall proteins (CWPs) during the development of wheat grain. This work describes for the first time the cell wall proteomes of the endosperm and outer layers of the wheat developing grain, which have distinct physiological functions and technological uses. Altogether 636 nonredundant predicted CWPs are identified with 337 proteins in the endosperm and 594 proteins in the outer layers, among which 295 proteins are present in both tissues, suggesting both common and tissue specific remodeling activities. These proteins are distributed into eight functional classes. Approximatively a quarter of them were predicted to act on cell wall polysaccharides, with many glycosylhydrolases and also expansin, lyases, and carbohydrate esterases. Therefore, these results provide crucial data to go further in the understanding of relationship between tissue-specific morphogenesis and cell wall remodeling in cereals. Data are available via ProteomeXchange with identifier PXD010367.


Assuntos
Endosperma/metabolismo , Proteoma/análise , Triticum/metabolismo , Parede Celular/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo
16.
Proteomics ; 17(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28155257

RESUMO

Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Caules de Planta/citologia , Proteoma/análise , Arabidopsis/citologia , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Caules de Planta/metabolismo , Proteoma/metabolismo
17.
Biochim Biophys Acta ; 1864(8): 983-90, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26945515

RESUMO

Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Assuntos
Parede Celular/metabolismo , Peptídeos/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos
18.
New Phytol ; 215(3): 1009-1025, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28617955

RESUMO

While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses.


Assuntos
Brachypodium/citologia , Brachypodium/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Arabidopsis/genética , Bases de Dados Genéticas , Oryza/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Transcriptoma/genética
19.
J Exp Bot ; 68(20): 5485-5495, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29145622

RESUMO

Extracellular vesicles (EV) are membrane particles released by cells into their environment and are considered to be key players in intercellular communication. EV are produced by all domains of life but limited knowledge about EV in plants is available, although their implication in plant defense has been suggested. We have characterized sunflower EV and tested whether they could interact with fungal cells. EV were isolated from extracellular fluids of seedlings and characterized by transmission electron microscopy and proteomic analysis. These nanovesicles appeared to be enriched in cell wall remodeling enzymes and defense proteins. Membrane-labeled EV were prepared and their uptake by the phytopathogenic fungus Sclerotinia sclerotiorum was verified. Functional tests further evaluated the ability of EV to affect fungal growth. Spores treated with plant EV showed growth inhibition, morphological changes, and cell death. Conclusive evidence on the existence of plant EV is presented and we demonstrate their ability to interact with and kill fungal cells. Our results introduce the concept of cell-to-cell communication through EV in plants.


Assuntos
Ascomicetos/fisiologia , Comunicação Celular , Vesículas Extracelulares/fisiologia , Helianthus/fisiologia , Helianthus/microbiologia , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Proteômica , Plântula/microbiologia , Plântula/fisiologia
20.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561754

RESUMO

Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.


Assuntos
Lectinas de Plantas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Receptores Mitogênicos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Lectinas de Plantas/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA