Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Mater ; 17(2): 195-203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251725

RESUMO

Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism.  These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.


Assuntos
Antivirais , Materiais Biomiméticos , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2/metabolismo , Nanopartículas , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/farmacologia , Herpes Simples/metabolismo , Herpes Simples/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia
2.
Cellulose (Lond) ; 25(6): 3255-3266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31007420

RESUMO

Natural materials are a focus for development of low carbon products for a variety of applications. To utilise these materials, processing is required to meet acceptable industry standards. Laminated bamboo is a commercial product that is currently being explored for structural applications, however there is a gap in knowledge about the effects of commercial processing on the chemical composition. The present study utilised interdisciplinary methods of analysis to investigate the effects of processing on the composition of bamboo. Two common commercial processing methods were investigated: bleaching (chemical treatment) and caramelisation (hygrothermal treatment). The study indicated that the bleaching process results in a more pronounced degradation of the lignin in comparison to the caramelised bamboo. This augments previous research, which has shown that the processing method (strip size) and treatment may affect the mechanical properties of the material in the form of overall strength, failure modes and crack propagation. The study provides additional understanding of the effects of processing on the properties of bamboo.

3.
Langmuir ; 33(6): 1343-1350, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28055217

RESUMO

Cucurbit[8]uril (CB[8]) heteroternary complexes display certain characteristics making them well-suited for molecular level adhesives. In particular, careful choice of host-guest binding pairs enables specific, fully reversible adhesion. Understanding the effect of the environment is also critical when developing new molecular level adhesives. Here we explore the binding forces involved in the methyl viologen·CB[8]·naphthol heteroternary complex using single-molecule force spectroscopy (SMFS) under a variety of conditions. From SMFS, the interaction of a single ternary complex was found to be in the region of 140 pN. Additionally, a number of surface interactions could be readily differentiated using the SMFS technique allowing for a deeper understanding of the dynamic heteroternary CB[8] system on the single-molecule scale.

4.
Proc Natl Acad Sci U S A ; 111(50): 17743-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25385610

RESUMO

The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.

5.
Angew Chem Int Ed Engl ; 54(18): 5383-8, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25772264

RESUMO

Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl-functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross-linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross-linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics.

6.
Opt Lett ; 39(2): 228-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562113

RESUMO

A noninvasive method to assess the local monomer concentration within a wooden matrix, post monomer impregnation, by time-resolved diffuse optical spectroscopy is demonstrated. A data analysis technique for improving accuracy, which takes account of changes in the refractive index during the monomer uptake, has been employed. This technique can be potentially applied in the wood industry for the study of polymer composites as well as in cultural heritage science for noninvasively monitoring the penetration of chemical compounds used for consolidation or conservation purposes.

7.
Macromol Rapid Commun ; 34(19): 1547-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23996858

RESUMO

Viologen end and side-chain functional macromolecules are synthesized through a high-yielding, copper-mediated azide-alkyne [3+2] cycloaddition reaction. Specifically, poly(ethylene glycol) (PEG) and the C-terminus of a model oligopeptide are quantitatively end-coupled to a viologen moiety as confirmed by (1) H NMR, gel permeation chromatography (GPC), and mass spectrometry (MS). Side-chain functionalization of a styrene backbone is also readily achieved forming a polyelectrolyte species and demonstrating the applicability of this method across a range of macromolecular species. It is found that viologen itself slows the reaction and that careful choice of counter ions, the specific chelating ligand for the copper-mediated reaction, solvent, as well as the amount of copper also play major roles in the time to completion of the reaction and hence the yield. Macromolecules formed through this route bind effectively with supramolecular host molecule cucurbit[8]uril allowing for controlled solution-phase self-assembly, for example of a supramolecular star polymer.


Assuntos
Alcinos/química , Azidas/química , Viologênios/química , Catálise , Cromatografia em Gel , Cobre/química , Reação de Cicloadição , Eletrólitos/química , Espectroscopia de Ressonância Magnética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Polietilenoglicóis/química
8.
Adv Mater ; 31(14): e1807282, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30767332

RESUMO

Food engineering faces the difficult challenge of combining taste, i.e., tailoring texture and rheology of food matrices with the balanced intake of healthy nutrients. In materials science, fiber suspensions and composites have been developed as a versatile and successful approach to tailor rheology while imparting materials with added functionalities. Structures based on such types of physical (micro)fibers are however rare in food production mainly due to a lack of food-grade materials and processes allowing for the fabrication of fibers with controlled sizes and microstructures. Here, the controlled fabrication of multi-material microstructured edible fibers is demonstrated using a food compatible process based on preform-to-fiber thermal drawing. It is shown that different material systems based on gelatin or casein, with plasticizers such as glycerol, can be thermally drawn into fibers with various geometries and cross-sectional structures. It is demonstrated that fibers can exhibit tailored mechanical properties post-drawing, and can encapsulate nutrients to control their release. The versatility of fiber materials is also exploited to demonstrate the fabrication of food-grade fabrics and scaffolds for food growth. The end results establish a new field in food production that relies on fiber-based simple and eco-friendly processes to realize enjoyable yet healthy and nutritious products.


Assuntos
Engenharia/métodos , Alimentos , Gelatina/química , Glicerol/química , Estilo de Vida Saudável , Fenômenos Mecânicos , Temperatura
9.
Nanoscale ; 9(42): 16128-16132, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29048437

RESUMO

Herein, we show how the inherent light-induced redox properties of semiconducting nanocrystals (NCs) can be utilized for the photo-driven reversible modulation of dynamic supramolecular systems formed at their interfaces that, on their own, do not respond to light. This was achieved by the unprecedented combination of photoactive zinc oxide NCs (ZnO NCs) with a host-guest chemistry of cucurbit[8]uril (CB[8]) providing a route to the semiconductor-assisted light modulation of supramolecular assemblies (SALSA), here mediated by the photo-generation of viologen radical cations (MV˙+) at the NC corona and their further dimerization enhanced by CB[8] macrocycles. The reported SALSA strategy was successfully applied for light-controlled reversible assembly processes at NC interfaces enabling light-triggered release of guest molecules from surface confined discrete CB[8] host-guest complexes.

10.
Chem Commun (Camb) ; 52(32): 5573-6, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27020731

RESUMO

A novel and convenient synthetic strategy for the preparation of magnetically responsive silica nanospheres decorated with mixed ligand protected gold nanoparticles is described. Gold nanoparticles are attached to the silica surface via stable amide bond formation. The hierarchical nanospheres show promising results as reusable and efficient catalysts for esterification reactions and they can be recovered through a simple magnetic separation.

11.
Angew Chem Weinheim Bergstr Ger ; 127(18): 5473-5478, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27478263

RESUMO

Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl-functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross-linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross-linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA