Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 586(7829): 385-389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057219

RESUMO

The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots.

2.
Chem Rev ; 123(8): 4663-4692, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36795794

RESUMO

Quantum dot light-emitting diodes (QD-LEDs) are one of the most promising self-emissive displays in terms of light-emitting efficiency, wavelength tunability, and cost. Future applications using QD-LEDs can cover a range from a wide color gamut and large panel displays to augmented/virtual reality displays, wearable/flexible displays, automotive displays, and transparent displays, which demand extreme performance in terms of contrast ratio, viewing angle, response time, and power consumption. The efficiency and lifetime have been improved by tailoring the QD structures and optimizing the charge balance in charge transport layers, resulting in theoretical efficiency for unit devices. Currently, longevity and inkjet-printing fabrication of QD-LEDs are being tested for future commercialization. In this Review, we summarize significant progress in the development of QD-LEDs and describe their potential compared to other displays. Furthermore, the critical elements to determine the performance of QD-LEDs, such as emitters, hole/electron transport layers, and device structures, are discussed comprehensively, and the degradation mechanisms of the devices and the issues of the inkjet-printing process were also investigated.

3.
Nature ; 575(7784): 634-638, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776489

RESUMO

Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.

4.
Nanotechnology ; 24(21): 215201, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23619206

RESUMO

Theoretical calculations based on density functional theory were performed to provide better understanding of the size dependent electronic properties of InP quantum dots (QDs). Using a hybrid functional approach, we suggest a reliable analytical equation to describe the change of energy band gap as a function of size. Synthesizing colloidal InP QDs with 2-4 nm diameter and measuring their optical properties was also carried out. It was found that the theoretical band gaps showed a linear dependence on the inverse size of QDs and gave energy band gaps almost identical to the experimental values.


Assuntos
Índio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfinas/química , Pontos Quânticos , Simulação por Computador , Transporte de Elétrons , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Propriedades de Superfície
5.
Nanoscale ; 11(48): 23251-23258, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782468

RESUMO

We investigated the dependence of the spectral diffusion and blinking behaviors of indium phosphide (InP) based core/shell/shell quantum dots (QDs) on their mid-shell compositions. We synthesized two types of core/shell/shell QDs having different mid-shell structures by controlling the shell thickness, the total sizes, and the selenium to sulfur ratios. The QDs with a discrete mid-shell (DS-QDs) exhibited a higher photoluminescence (PL) quantum yield (QY) and a narrower PL linewidth than the QDs with a gradient mid-shell (GS-QDs). By analyzing X-ray diffraction (XRD) patterns, and Raman spectra, we found that GS-QDs showed a larger lattice mismatch between the core and the shell than DS-QDs. Also, the spectral diffusion, PL blinking, Auger ionization efficiencies, and the lifetime blinking behavior on single QDs revealed that DS-QDs were nearly unaffected by the defect traps.

6.
Inorg Chem ; 47(15): 6566-8, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18588289

RESUMO

A discrete heterodinuclear Al (III)/Ir (III) complex shows bright-orange light emission when used as an active layer in host-dopant assembly organic light-emitting diodes based on a solution process.

8.
Dalton Trans ; (14): 1818-20, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18369485

RESUMO

The organic light-emitting diodes (OLEDs) employing complex [salen(tBu)4Al(OC6H4-p-C6H5)] (4) as a hole-blocking layer produced stable green EL emission of Ir(ppy)3 irrespective of changing current density and showed higher brightness and device efficiency than the BAlq-based device.


Assuntos
Alumínio/química , Etilenodiaminas/química , Luminescência , Compostos Orgânicos/química , Compostos Organometálicos/química , Irídio/química , Luz , Medições Luminescentes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA