Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239855

RESUMO

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Biol Chem ; 296: 100595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781747

RESUMO

Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL-17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells.


Assuntos
Densidade Óssea , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Interleucina-17/biossíntese , Fígado/metabolismo , Proteína Amiloide A Sérica/genética , Animais , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Osteoclastos/metabolismo
3.
Curr Issues Mol Biol ; 43(3): 2011-2021, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34889893

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol's effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.


Assuntos
Doenças Desmielinizantes/metabolismo , Farneseno Álcool/farmacologia , Fenótipo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Animais , Biomarcadores , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/etiologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Masculino , Camundongos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
4.
Sep Purif Technol ; 279: 119625, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36569224

RESUMO

Current global emergencies, such as the COVID-19 pandemic and particulate matter (PM) pollution, require urgent protective measures. Nanofibrous air filter membranes that can capture PM0.3 and simultaneously help in preventing the spread of COVID-19 are essential. Therefore, a highly efficient nanofibrous air filter membrane based on amphiphilic poly(vinylidene fluoride)-graft-poly(oxyethylene methacrylate) (PVDF-g-POEM) double comb copolymer was fabricated using atomic transfer radical polymerization (ATRP) and electrospinning. Fourier transform infrared spectroscopy, X-ray diffraction, proton nuclear magnetic resonance, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were employed to successfully characterize the molecular structure of the fabricated amphiphilic PVDF-g-POEM double comb copolymer. The nanofibrous air filter membrane based on amphiphilic PVDF-g-POEM double comb copolymer achieved a low air resistance of 4.69 mm H2O and a high filtration efficiency of 93.56 % due to enhanced chemical and physical adsorption properties.

5.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299129

RESUMO

Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Animais , Ciclo Celular , Movimento Celular , Proliferação de Células , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Nus , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Comput Inform Nurs ; 39(11): 634-643, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33935202

RESUMO

We aimed to develop and evaluate the effectiveness of a smart device-based test to assess Korean undergraduate students' clinical nursing competency, named SBT-NURS. The 65-item SBT-NURS comprises questions that simulate clinical situations, are problem solving-oriented, use multimedia (ie, videos/photos/animations), and involve the following topics: medical-surgical nursing, fundamentals of nursing, pediatrics, maternity, management, and psychiatric. We utilized a quantitative method to analyze the effects of the SBT-NURS (ie, via a single-group, post-experimental survey design) and a qualitative method to analyze students' experiences of using the SBT-NURS (ie, via seven focus group interviews [FGIs]). Students' overall adult health nursing paper-based test scores (ie, combining their scores in group activity, presentation, attendance, and attitude toward the midterm and final tests on adult health nursing) (r = 0.552, P < .001) and clinical practicum scores (r = 0.268, P = .040) in the last semester showed a statistically significant positive correlation with their SBT-NURS scores. Their paper-based testing practice average scores (ie, combination between paper-based tests and clinical practicum scores) showed a similar significant correlation (r = 0.506, P < .001). Students deemed the SBT-NURS advantageous, satisfactory, convenient, and useful. The SBT-NURS may be an effective learning and evaluation method for nursing education that help improve students' clinical competency and learning outcomes.


Assuntos
Bacharelado em Enfermagem , Educação em Enfermagem , Estudantes de Enfermagem , Adulto , Criança , Competência Clínica , Feminino , Humanos , Preceptoria , Gravidez , Inquéritos e Questionários
7.
Scand J Immunol ; 89(6): e12764, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30892738

RESUMO

Serum amyloid A (SAA) is an acute phase protein with pro-inflammatory cytokine-like properties. Recent studies have revealed that SAA promoted interleukin-17 (IL-17) production by various cells, including γδ T cells. γδ T cells are innate immune cells and express Toll-like receptor 2 (TLR2) on their surface, which is one of the SAA receptors. In this study, we investigated the relationship between γδ T cells and SAA1 through TLR2, by using hepatic SAA1-overexpressing transgenic (TG) mice. By injecting CU-CPT22, which is a TLR2 inhibitor, into the mice, we confirmed that SAA1 induced IL-17 in γδ T cells through TLR2. In vitro studies have confirmed that SAA1 increased IL-17 secretion in γδ T cells in combination with IL-23. We also observed a thickened epidermis layer and granulocyte penetration into the skin similar to the pathology of psoriasis in TG mice. In addition, strongly expressed SAA1 and penetration of γδ T cells in the skin of TG mice were detected. The exacerbation of psoriasis is associated with an increase in IL-17 levels. Therefore, these symptoms were induced by IL-17-producing γδ T cells increased by SAA1. Our study confirmed that SAA1 was a prominent protein that increased IL-17 levels through TLR2 in γδ T cells, confirming the possibility that SAA1 may exacerbate inflammatory diseases through γδ T cells.


Assuntos
Interleucina-17/biossíntese , Psoríase/patologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteína Amiloide A Sérica/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Células Cultivadas , Subunidade p19 da Interleucina-23/biossíntese , Subunidade p19 da Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Psoríase/imunologia , RNA Mensageiro/biossíntese , Receptor 2 Toll-Like/antagonistas & inibidores
8.
FASEB J ; 32(1): 390-403, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28899881

RESUMO

Ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1, c-fos, Arc, and Bdnf, followed by the activation of intracellular calcium signals (i.e., CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits (Gabra2 and Gabra4) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.


Assuntos
Ansiedade/genética , Ansiedade/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Medo/fisiologia , Memória/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Sinalização do Cálcio , Proteínas de Ligação a DNA/antagonistas & inibidores , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Genes Precoces , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/genética , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Córtex Pré-Frontal/metabolismo , Gravidez , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores de GABA-A/genética , Regulação para Cima
9.
Transgenic Res ; 28(5-6): 499-508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31407125

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by cognitive impairment, progressive neurodegeneration, and amyloid-ß (Aß) lesion. In the neuronal death and disease progression, inflammation is known to play an important role. Our previous study on acute-phase protein serum amyloid A1 (SAA1) overexpressed mice showed that the liver-derived SAA1 accumulated in the brain by crossing the brain blood barrier (BBB) and trigger the depressive-like behavior on mouse. Since SAA1 involved in immune responses in other diseases, we focused on the possibility that SAA1 may exacerbate the neuronal inflammation related to Alzheimer's disease. A APP/SAA overexpressed double transgenic mouse was generated using amyloid precursor protein overexpressed (APP)-c105 mice and SAA1 overexpressed mice to examine the function of SAA1 in Aß abundant condition. Comparisons between APP and APP/SAA1 transgenic mice showed that SAA1 exacerbated amyloid aggregation and glial activation; which lead to the memory decline. Behavior tests also supported this result. Overall, overexpression of SAA1 intensified the neuronal inflammation in amyloid abundant condition and causes the greater memory decline compared to APP mice, which only expresses Aß 1-42.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Placa Amiloide/genética , Proteína Amiloide A Sérica/genética , Doença de Alzheimer/sangue , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Transgênicos/genética , Neuroglia/metabolismo , Neuroglia/patologia , Placa Amiloide/sangue , Agregação Patológica de Proteínas/sangue , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia
10.
Cell Biochem Funct ; 37(3): 139-147, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30883865

RESUMO

Lin28, which is highly expressed during embryogenesis, has been shown to play an important role in cell growth and embryonic development. Meanwhile, Lin28 represses let-7 miRNA biogenesis and block pre-let-7 processing in the cytoplasm. The let-7 family of miRNAs is known to repress oncogenesis and cell cycle progression by targeting oncogenic genes and signalling pathways. Consequently, Lin28 acts as an oncogene by upregulating let-7 targets through the repression of let-7 biogenesis. A recent genome-wide association study (GWAS) showed that many genes related to Type 2 diabetes (T2D) are also oncogenes or cell cycle regulators. The role of Lin28 in mouse growth and glucose metabolism in metabolic-related tissues has also been studied. In these studies, whole-body Lin28 overexpression was found to promote glucose utilization and prevent weight gain by inhibiting let-7 biogenesis. Furthermore, Lin28 has been found to directly stimulate skeletal myogenesis and cell growth. Therefore, we determined whether similar effects mediated by Lin28a, which is essential for cell growth and proliferation, may also apply to pancreatic ß-cells. We found that overexpression of Lin28a protects pancreatic ß-cells from streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a-overexpressing transgenic (Tg) mice had higher insulin secretion in the presence of glucose than in control mice. Our findings suggest that the Lin28/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes. SIGNIFICANCE OF THE STUDY: We demonstrate that Lin28a prevents pancreatic ß-cell death against streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a promotes cell survival and proliferation by activating the PI3K-Akt signalling pathway, which may be dependent on let-7 regulation. Taken together, our results imply that the Lin28a/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Proteínas de Ligação a RNA/metabolismo , Estreptozocina , Células Tumorais Cultivadas
11.
BMC Complement Altern Med ; 19(1): 347, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791315

RESUMO

BACKGROUND: The root bark of Dictamnus dasycarpus Turcz. has been successfully used for the treatment of inflammatory skin conditions such as eczema and pruritus. However, the anti-psoriatic effect of this plant has not until now been investigated. METHODS: The aim of this project was to investigate whether a methanol extract of Dictamnus dasycarpus Turcz. root bark (MEDD) can be used as a therapeutic agent for psoriasis in C57BL/6 mice model of imiquimod (IMQ)-induced psoriasis. IMQ and MEDD was applied to mouse skin continuously for 7 days. The skin phenotype and the levels of inflammatory cytokines, such as interferon (IFN)-γ and interleukin (IL)-17, were analyzed. The immune cell population was determined by flow cytometry, and STAT1 and 3 protein levels were measured. RESULTS: An alleviation of scaly skin phenotype, immune cell infiltration in the dermis, and epidermal hyperplasia was observed after daily MEDD treatment in the lesion-affected area. It was also found that MEDD reduced IL-17 cytokine levels decreased by 44.37% (p < 0.05), the number of IL-17-producing Th17 cells and γδT cells, and the size of the Th1 population secreting IFN-γ decreased by 45.98, 62.21, and 44.42%, respectively (p < 0.05), compared with the vehicle control group. STAT3 signals, associated with IL-17 are also reduced by MEDD. CONCLUSIONS: An anti-psoriatic effect of MEDD was observed, as determined by decreased skin inflammation, reduced number of inflammatory cytokines, and a smaller population of inflammatory cells. These results contribute to the validation of the use of MEDD in the treatment of psoriasis.


Assuntos
Anti-Inflamatórios/farmacologia , Dictamnus , Imiquimode/efeitos adversos , Extratos Vegetais/farmacologia , Psoríase , Animais , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/química , Psoríase/induzido quimicamente , Psoríase/metabolismo , Fator de Transcrição STAT3/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Linfócitos T Auxiliares-Indutores
12.
Endocr J ; 65(4): 437-447, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29434073

RESUMO

Placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a major role in angiogenesis and vasculogenesis. Previous study demonstrated that PlGF-overexpressing transgenic (Tg) mice had gestational loss. In addition, PlGF secretion was up-regulated in isolated T lymphocytes (T-cell) upon CD3/CD28 stimulation, suggesting that PlGF could be a regulator of T-cell differentiation and development. T-cells are well known to play a critical role in obesity-induced inflammation. Therefore, to verify the possible link of diet-induced obesity (DIO) with inflammation and related metabolic disorders, such as insulin resistance, we fed high-fat diet (HFD) to Tg mice for 16 weeks. Adiposity and glucose intolerance significantly increase in Tg mice fed a HFD (Tg HFD) compared to wild-type (WT) mice fed HFD (WT HFD). In addition, macrophage infiltrations were significantly higher in the epididymal white adipose tissue (EWAT), liver, and pancreatic islets of Tg HFD mice compared to WT HFD mice. In the in vitro study, we showed that isolated CD4+ T-cells from Tg mice further differentiate into type 1 (Th1) and type 17 (Th17) helper T-cells via CD3/CD28 stimulation. Furthermore, we observed that the pro-inflammatory cytokines IL-6, IL-17, and TNFα, are remarkably increased in Tg mice compared to WT mice. These findings demonstrate that PlGF overexpression in T-cells might lead to inflammatory T-cell differentiation and accumulation in adipose tissue (AT) or metabolism-related tissues, contributing to the development of systemic metabolic disorders. Thus, PlGF may provide an effective therapeutic target in the management of obesity-induced inflammation and related metabolic disorders.


Assuntos
Citocinas/biossíntese , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Obesidade/metabolismo , Fator de Crescimento Placentário/metabolismo , Adiposidade/fisiologia , Animais , Inflamação/genética , Resistência à Insulina/fisiologia , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Fator de Crescimento Placentário/genética
13.
Cell Biochem Funct ; 35(7): 392-400, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28895148

RESUMO

Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma-associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2-overexpressing iPS cells from hMAGEA2-overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self-renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self-renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos Específicos de Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Antígenos Específicos de Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Retroviridae/genética , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biochem Biophys Res Commun ; 471(4): 437-43, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26902115

RESUMO

Epigenetic mechanisms are relevant to development and contribute to fetal neurogenesis. DNA methylation and demethylation contribute to neural gene expression during mouse brain development. Ten-eleven translocation 1 (TET1) regulates DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). TET1 specifically regulates 5hmC in the central nervous system (CNS), including during neurogenesis in the adult brain. However little is known about its function in fetal neurogenesis. In order to evaluate the role of TET1 in fetal brain development, we generated TET1-overexpressing transgenic (TG) mice. TET1 overexpression was confirmed in the brains of fetal mice, and we detected 5hmC overexpression in the TG brains compared to that in the wild type (WT) brains, using a dot-blot assay. In order to observe the role of TET1 in fetal brain development, we examined fetal brain samples at varied time points by using real-time PCR, Western blotting, and Immunofluorescence (IF). We confirmed that TET1 contributes to neurogenesis by upregulating the protein expressions of neuronal markers in the TG mouse brains, as determined by Western blotting. However the cortex structure or brain mass between WT and TG mice showed no significant difference by IF. In conclusion, TET1 makes the start time of neurogenesis earlier in the TG brains compared to that in the WT brains during fetal brain development.


Assuntos
Encéfalo/embriologia , Proteínas de Ligação a DNA/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
BMB Rep ; 57(9): 417-423, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219045

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP), a 42-aminoacid hormone, exerts multifaceted effects in physiology, most notably in metabolism, obesity, and inflammation. Its significance extends to neuroprotection, promoting neuronal proliferation, maintaining physiological homeostasis, and inhibiting cell death, all of which play a crucial role in the context of neurodegenerative diseases. Through intricate signaling pathways involving its cognate receptor (GIPR), a member of the G protein-coupled receptors, GIP maintains cellular homeostasis and regulates a defense system against ferroptosis, an essential process in aging. Our study, utilizing GIP-overexpressing mice and in vitro cell model, elucidates the pivotal role of GIP in preserving neuronal integrity and combating age-related damage, primarily through the Epac/Rap1 pathway. These findings shed light on the potential of GIP as a therapeutic target for the pathogenesis of ferroptosis in neurodegenerative diseases and aging. [BMB Reports 2024; 57(9): 417-423].


Assuntos
Envelhecimento , Ferroptose , Polipeptídeo Inibidor Gástrico , Transdução de Sinais , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Receptores dos Hormônios Gastrointestinais/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos Endogâmicos C57BL
16.
Food Sci Anim Resour ; 44(1): 189-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229858

RESUMO

This study investigated the antioxidant activity of radish seed oil (RSO) and its effects on the quality and storage characteristics of pork patties. To assess the antioxidant capacity of RSO, this study analyzed fatty acid composition, peroxide value (PV), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Pork patties were manufactured with the addition of RSO-0.4%, 0.8%, 1.6%, and 2.4%-and measured in terms of proximate composition, pH, water holding capacity (WHC), cooking loss (CL), color, texture profile analysis, and a sensory evaluation. Total microbial count (TMC), volatile basic nitrogen (VBN), thiobarbituric acid reactive substances (TBARS), and PV were measured at 1, 3, and 7 days of refrigerated storage. The DPPH radical scavenging activity of RSO was found to be 75.46%. In the cases of WHC and CL, there was no significant differences observed between RSO0.4%, RSO0.8%, and positive control (PC; p>0.05). Meanwhile, RSO2.4% showed significantly lower hardness, springiness, gumminess, and chewiness than PC (p<0.05), and these values tended to decrease with the addition of increasing RSO. In terms of storage characteristics, with an increase in the amount of RSO added, TMC, VBN, TBARS, and PV all decreased; among the treatment groups, RSO2.4% showed the lowest values. In conclusion, RSO exhibits antioxidant activity, but when added in large amounts, it negatively affects the quality characteristics of patties while positively impacting their storage properties, thus necessitating a balanced consideration of both outcomes. Therefore, adding 1.6% RSO is considered to be the most appropriate level for formulations to be used in practice.

17.
Food Sci Anim Resour ; 44(4): 817-831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974719

RESUMO

In this study, physicochemical and antioxidant properties, and storage stability (1, 3, and 7 days) of pork patties added with edible insect powders (EIP) of four species (Larvae of Tenenbrio molitor, Protaetia brevitarsis seulensis, Allomyrina dichotoma, and Gryllus bimaculatus) as meat partial substitutes were investigated. Twenty percent of each EIP was added to pork patties, and four treatments were prepared. On the other hand, two control groups were set, one with 0.1 g of ascorbic acid and the other without anything. Adding EIP decreased water content but increased protein, fat, carbohydrate, and ash contents. In addition, the use of EIP increased the water holding capacity and texture properties as well as decreased the cooking loss. However, the sensory evaluation and storage stability were negatively affected by the addition of EIP. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity had a positive effect on storage stability. It is believed that the addition of EIP resulted in high antioxidants due to the presence of polyphenol compounds in EIP. These results indicate that EIP has great potential to be used as meat partial substitute to improve the quality improvement and antioxidant in pork patties. However, in order to improve storage stability and consumer preference, further research is needed to apply it to patties by reducing the amount of EIP or adding auxiliary ingredients.

18.
Sci Rep ; 14(1): 10978, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744928

RESUMO

Maintaining epidermal homeostasis relies on a tightly organized process of proliferation and differentiation of keratinocytes. While past studies have primarily focused on calcium regulation in keratinocyte differentiation, recent research has shed light on the crucial role of lysosome dysfunction in this process. TLR adaptor interacting with SLC15A4 on the lysosome (TASL) plays a role in regulating pH within the endo-lysosome. However, the specific role of TASL in keratinocyte differentiation and its potential impact on proliferation remains elusive. In our study, we discovered that TASL deficiency hinders the proliferation and migration of keratinocytes by inducing G1/S cell cycle arrest. Also, TASL deficiency disrupts proper differentiation process in TASL knockout human keratinocyte cell line (HaCaT) by affecting lysosomal function. Additionally, our research into calcium-induced differentiation showed that TASL deficiency affects calcium modulation, which is essential for keratinocyte regulation. These findings unveil a novel role of TASL in the proliferation and differentiation of keratinocytes, providing new insights into the intricate regulatory mechanisms of keratinocyte biology.


Assuntos
Cálcio , Diferenciação Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos , Lisossomos , Humanos , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Queratinócitos/metabolismo , Queratinócitos/citologia , Lisossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
19.
Anticancer Res ; 44(7): 2847-2859, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925815

RESUMO

BACKGROUND/AIM: Human melanoma-associated antigen A2 (hMAGEA2) family members play several roles in many types of cancer and have been explored as potential prognostic markers. In this study, we investigated the molecular mechanism underlying hMAGEA2-mediated tumorigenesis of prostate cancer. MATERIALS AND METHODS: Immunohistochemistry and western blot were used to assess protein expression whereas microarray and quantitative reverse transcription-PCR determined mRNA expression. CCK-8 assay was used to determine cell proliferation. Colony formation assay was used to examine tumorigenesis. Migration and invasion were examined using a transwell assay. Propidium iodide (PI)/Annexin V double staining was performed to measure apoptosis. Transcriptional activity was measured using Dual-luciferase reporter assay. RESULTS: hMAGEA2 was highly over-expressed in human prostate cancer tissues compared to benign prostatic hyperplasia tissues. To elucidate its biological function in prostate cancer, we established two stable hMAGEA2-knockdown prostate cancer cell lines, PC3M and 22RV1, and found that they presented significantly decreased proliferation, anchorage-independent colony formation, migration, and invasion. As hMAGEA2 knockdown suppressed prostate cancer cell growth, we examined its potential influence on tumor apoptosis. hMAGEA2-knockdown cell lines displayed early apoptosis. Moreover, knockdown of hMAGEA2 resulted in the down-regulation of EFNA3 expression. Luciferase assay showed that hMAGEA2 bound to the EFNA promoter region and regulated its transcription. Down-regulation of EFNA3 expression led to decreased Ras/Braf/MEK/Erk1/2 phosphorylation and, consequently, inhibited prostate cancer progression. CONCLUSION: hMAGEA2 promotes prostate cancer growth, metastasis, and tumorigenesis by regulating the EFNA3-Erk1/2 signaling pathway, indicating its potential as a therapeutic marker for prostate cancer.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Sistema de Sinalização das MAP Quinases , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição
20.
BMB Rep ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044457

RESUMO

Primary cilia are crucial for cellular balance, serving as sensors for external conditions. Nephronophthisis and related ciliopathies, which are hereditary and degenerative, stem from genetic mutations in cilia-related genes. However, the precise mechanisms of these conditions are still not fully understood. Our research demonstrates that downregulating PDIA6, leading to cilia removal, makes cells more sensitive to ferroptotic death caused by endoplasmic reticulum (ER) stress. The reduction of PDIA6 intensifies the ER stress response, while also impairing the regulation of primary cilia in various cell types. PDIA6 loss worsens ER stress, hastening ferroptotic death in proximal tubule epithelial cells, HK2 cells. Counteracting this ER stress can mitigate PDIA6 depletion effects, restoring both the number and length of cilia. Moreover, preventing ferroptosis corrects the disrupted primary ciliogenesis due to PDIA6 depletion in HK2 cells. Our findings emphasize the role of PDIA6 in primary ciliogenesis, and suggest its absence enhances ER stress and ferroptosis. These insights offer new therapeutic avenues for treating nephronophthisis and similar ciliopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA