Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0280636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763612

RESUMO

Various faulty farming practices and low-performance cultivars selection are reducing crop yields, factor productivity, and soil fertility. Therefore, there is an urgent need to achieve better nutrient dynamics and sustainable production by selecting more nutrient-responsive cultivars using efficient nutrient management. The present experiment aimed to enhance crop productivity, seed quality, nutrient efficiency, and soil nutrient dynamics through efficient nutrient management under different lentil cultivars. The experiment was laid out in a split-plot design, assigning three cultivars (viz. Sapna, Garima, and HM-1) in the main plots and ten nutrient management practices in the sub-plots, replicating them thrice. Results revealed that cultivar HM-1 recorded significantly higher seed yield (1.59-1.61 Mg ha-1) and the uptake of N (67.2-67.6 kg ha-1), P (6.8-7.0 kg ha-1), K (13.8-13.9 kg ha-1), Zn (60.4-61.1 g ha-1), and Fe (162.5-165.2 g ha-1) in seed compared to Sapna and Garima. Also, the cultivar HM-1 was more efficient in terms of partial factor productivity for NPK (PFP; 24.27-24.59 kg kg-1), partial nutrient balance (PNB; 2.09-2.13 kg kg-1) and internal utilisation efficiency (IUE; 11.64-11.85 kg kg-1). The study showed that the lentil cultivar HM-1 could be successfully grown by substituting 50% RDN with organic manures, i.e., vermicompost, without compromising crop productivity and soil fertility, thereby sustaining soil-human-environment health.


Assuntos
Lens (Planta) , Humanos , Produtos Agrícolas , Fertilizantes/análise , Solo , Nutrientes , Índia
2.
Front Microbiol ; 13: 1041124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817102

RESUMO

Pulses are an important source of energy and protein, essential amino acids, dietary fibers, minerals, and vitamins, and play a significant role in addressing global nutritional security. The global pulse area, production, and average productivity increased from 1961 to 2020 (60 years). Pulses are usually grown under rainfed, highly unstable, and complex production environments, with substantial variability in soil and environmental factors, high year-to-year output variability, and variation in soil moisture. Since the last six decades, there is not much satisfactory improvement in the yield of pulses because of their cultivation in harsh environments, coupled with their continuous ignorance of the farmers and governments in policy planning. As a result, the global food supplies through pulses remained negligible and amounted to merely ~1.0% of the total food supply and 1.2% of the vegan food system. In this situation, protein-rich food is still a question raised at the global level to make a malnutrition-free world. Pulses are a vital component of agricultural biological diversity, essential for tackling climate change, and serve as an energy diet for vegetarians. Pulses can mitigate climate change by reducing the dependence on synthetic fertilizers that artificially introduce nitrogen (N) into the soil. The high demand and manufacture of chemical fertilizers emit greenhouse gases (GHGs), and their overuse can harm the environment. In addition, the increasing demand for the vegetal protein under most global agroecosystems has to be met with under a stressed rainfed situation. The rainfed agroecosystem is a shelter for poor people from a significant part of the globe, such as Africa, South Asia, and Latin America. Nearly, 83% [over 1,260 million hectares (ha)] of cultivated land comes under rainfed agriculture, contributing significantly to global food security by supplying over 60% of the food. In rainfed areas, the limitation of natural resources with the shrinking land, continuous nutrient mining, soil fertility depletion, declining productivity factor, constantly depleting water availability, decreasing soil carbon (C) stock, augmented weed menace, ecological instability, and reduced system productivity are creating a more challenging situation. Pulses, being crops of marginal and semi-marginal soils of arid and semi-arid climates, require less input for cultivation, such as water, nutrients, tillage, labor, and energy. Furthermore, accommodation of the area for the cultivation of pulses reduces the groundwater exploitation, C and N footprints, agrochemical application in the cropping systems, and ill effects of climate change due to their inherent capacity to withstand harsh soil to exhibit phytoremediation properties and to stand well under stressed environmental condition. This article focuses on the role of pulses in ecological services, human wellbeing, soil, environmental health, and economic security for advanced sustainability. Therefore, this study will enhance the understanding of productivity improvement in a system-based approach in a rainfed agroecosystem through the involvement of pulses. Furthermore, the present study highlighted significant research findings and policy support in the direction of exploring the real yield potential of pulses. It will provide a road map to producers, researchers, policymakers, and government planners working on pulses to promote them in rainfed agroecosystems to achieve the United Nations (UN's) Sustainable Development Goals (SDGs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA