RESUMO
OBJECTIVES: This systematic review and meta-analysis aimed to evaluate the role of B-mode transorbital ultrasonography (TOS) for the diagnosis of idiopathic intracranial hypertension (IIH) in adults. METHODS: MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) (1966-May 2022) were searched to identify studies reporting ultrasonographic data about the optic nerve sheath diameter (ONSD) and optic disc elevation (ODE) in adults with IIH compared to subjects without IIH. The quality of the included studies was evaluated by the Newcastle-Ottawa Quality. RESULTS: Fifteen studies were included (total of 439 patients). The values of ODE ranged from 0.6 to 1.3 mm in patients with IIH. The values of ONSD ranged from 4.7 to 6.8 mm in IIH patients and from 3.9 to 5.7 mm in controls. In IIH patients, the ONSD was significantly higher compared to controls (standardized mean difference: 2.5 mm, 95% confidence interval (CI): 1.6-3.4 mm). Nine studies provided data about the presence of papilledema and the pooled prevalence was 95% (95% CI, 92-97%). CONCLUSIONS: In adults, the thickness of ONSD and the entity of ODE were significantly associated with IIH. B-mode TOS enables to noninvasively detect increased ICP and should be performed, potentially routinely, in any patient with suspected IIH.
Assuntos
Hipertensão Intracraniana , Nervo Óptico , Papiledema , Pseudotumor Cerebral , Adulto , Humanos , Hipertensão Intracraniana/diagnóstico por imagem , Pressão Intracraniana , Nervo Óptico/diagnóstico por imagem , Pseudotumor Cerebral/diagnóstico por imagem , UltrassonografiaRESUMO
Gemfibrozil is a drug that has been used for over 40 years to lower triglycerides in blood. As a ligand for peroxisome proliferative-activated receptor-alpha (PPARα), which is expressed in many tissues, it induces the transcription of numerous genes for carbohydrate and lipid-metabolism. However, nothing is known about how intracellular lipid-homeostasis and, in particular, triglycerides are affected. As triglycerides are stored in lipid-droplets, which are known to be associated with many diseases, such as Alzheimer's disease, cancer, fatty liver disease and type-2 diabetes, treatment with gemfibrozil could adversely affect these diseases. To address the question whether gemfibrozil also affects intracellular lipid-levels, SH-SY5Y, HEK and Calu-3 cells, representing three different metabolically active organs (brain, lung and kidney), were incubated with gemfibrozil and subsequently analyzed semi-quantitatively by mass-spectrometry. Importantly, all cells showed a strong increase in intracellular triglycerides (SH-SY5Y: 170.3%; HEK: 272.1%; Calu-3: 448.1%), suggesting that the decreased triglyceride-levels might be due to an enhanced cellular uptake. Besides the common intracellular triglyceride increase, a cell-line specific alteration in acylcarnitines are found, suggesting that especially in neuronal cell lines gemfibrozil increases the transport of fatty acids to mitochondria and therefore increases the turnover of fatty acids for the benefit of additional energy supply, which could be important in diseases, such as Alzheimer's disease.
Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Genfibrozila/farmacologia , Doença de Alzheimer/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Triglicerídeos/metabolismo , Ácidos Graxos , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêuticoRESUMO
Administration of systemic retinoids such as acitretin has not been approved yet for pediatric patients. An adverse event of retinoid-therapy that occurs with lower prevalence in children than in adults is hyperlipidemia. This might be based on the lack of comorbidities in young patients, but must not be neglected. Especially for the development of the human brain up to young adulthood, dysbalance of lipids might be deleterious. Here, we provide for the first time an in-depth analysis of the influence of subchronic acitretin-administration on lipid composition of brain parenchyma of young wild type mice. For comparison and to evaluate the systemic effect of the treatment, liver lipids were analogously investigated. As expected, triglycerides increased in liver as well as in brain and a non-significant increase in cholesterol was observed. However, specifically brain showed an increase in lyso-phosphatidylcholine and carnitine as well as in sphingomyelin. Group analysis of lipid classes revealed no statistical effects, while single species were tissue-dependently changed: effects in brain were in general more subtly as compared to those in liver regarding the mere number of changed lipid species. Thus, while the overall impact of acitretin seems comparably small regarding brain, the change in individual species and their role in brain development and maturation has to be considered.
Assuntos
Acitretina , Hiperlipidemias , Adulto , Humanos , Criança , Adolescente , Animais , Camundongos , Adulto Jovem , Acitretina/farmacologia , Acitretina/uso terapêutico , Lipidômica , Hiperlipidemias/induzido quimicamente , Colesterol , EncéfaloRESUMO
Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.
Assuntos
Doença de Alzheimer/metabolismo , Lipídeos/fisiologia , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Xantinas/farmacologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Pentoxifilina/farmacologia , Teobromina/farmacologia , Teofilina/farmacologia , Triglicerídeos/metabolismoRESUMO
Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer's disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines-caffeine, theophylline and theobromine-and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.
Assuntos
Doença de Alzheimer/genética , Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Xantinas/farmacologia , Linhagem Celular Tumoral , Genes Essenciais , Humanos , Pentoxifilina/farmacologia , Análise de Componente Principal , Teobromina/farmacologia , Teofilina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Xantinas/químicaRESUMO
Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-ß (Aß), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aß-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D2 and D3 analogues decreased Aß-production and increased Aß-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aß-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased ß-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/tratamento farmacológico , Proteólise , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologiaRESUMO
BACKGROUND AND PURPOSE: The purpose of this study was to evaluate the performance of magnetic resonance imaging (MRI) in measuring the optic nerve sheath diameter (ONSD) compared to the established method transorbital sonography (TOS) in patients with idiopathic intracranial hypertension (IIH). METHODS: Twenty-three patients with IIH were prospectively included applying IIH diagnostic criteria. All patients received a lumbar puncture with assessment of the cerebrospinal fluid (CSF) opening pressure to assure the IIH diagnosis. Measurement of ONSD was performed 3 mm posterior to inner sclera surface in B-TOS by an expert examiner, while three independent neuroradiologists took measurements in axial T-weighted MRI examinations. The sella turcica with the pituitary gland (and potential presence of an empty sella) and the trigeminal cavity were also assessed on sagittal and transversal T1-weighted MRI images by one independent neuroradiologist. RESULTS: The means of ONSD between ultrasound and MRI measurements were 6.3 mm (standard deviation [SD] = 0.6 mm) and 6.2 mm (SD = 0.8 mm). The interrater reliability between three neuroradiologists showed a high interclass correlation coefficient (ICC) (confidence interval: .573 < ICC < .8; p < .001). In patients with an empty sella, the ONSD evaluated by MRI was 6.6 mm, while measuring 6.1 mm in patients without empty sella. No correlation between CSF opening pressure and ONSD was found. CONCLUSIONS: MRI can reliably measure ONSD and yields similar results compared to TOS in patients with IIH. Moreover, patients with empty sella showed significantly larger ONSD than patients without empty sella.
Assuntos
Hipertensão Intracraniana , Pseudotumor Cerebral , Humanos , Pseudotumor Cerebral/diagnóstico por imagem , Pseudotumor Cerebral/patologia , Reprodutibilidade dos Testes , Nervo Óptico/diagnóstico por imagem , Ultrassonografia , Pressão Intracraniana , Imageamento por Ressonância Magnética , Hipertensão Intracraniana/diagnóstico por imagem , Hipertensão Intracraniana/patologiaRESUMO
Due to a worldwide increase in obesity and metabolic disorders such as type 2 diabetes, synthetic sweeteners such as aspartame are frequently used to substitute sugar in the diet. Possible uncertainties regarding aspartame's ability to induce oxidative stress, amongst others, has led to the recommendation of a daily maximum dose of 40 to 50 mg per kg. To date, little is known about the effects of this non-nutritive sweetener on cellular lipid homeostasis, which, besides elevated oxidative stress, plays an important role in the pathogenesis of various diseases, including neurodegenerative diseases such as Alzheimer's disease. In the present study, treatment of the human neuroblastoma cell line SH-SY5Y with aspartame (271.7 µM) or its three metabolites (aspartic acid, phenylalanine, and methanol (271.7 µM)), generated after digestion of aspartame in the human intestinal tract, resulted in significantly elevated oxidative stress associated with mitochondrial damage, which was illustrated with reduced cardiolipin levels, increased gene expression of SOD1/2, PINK1, and FIS1, and an increase in APF fluorescence. In addition, treatment of SH-SY5Y cells with aspartame or aspartame metabolites led to a significant increase in triacylglycerides and phospholipids, especially phosphatidylcholines and phosphatidylethanolamines, accompanied by an accumulation of lipid droplets inside neuronal cells. Due to these lipid-mediating properties, the use of aspartame as a sugar substitute should be reconsidered and the effects of aspartame on the brain metabolism should be addressed in vivo.
Assuntos
Diabetes Mellitus Tipo 2 , Neuroblastoma , Humanos , Aspartame/farmacologia , Aspartame/metabolismo , Edulcorantes/farmacologia , Estresse Oxidativo , Lipídeos/farmacologiaRESUMO
Oxidative stress is closely linked to Alzheimer's disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/metabolismo , Estresse Oxidativo , Plasmalogênios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esfingomielinas , Vitamina B 12/farmacologiaRESUMO
Cellular lipid metabolism is tightly regulated and requires a sophisticated interplay of multiple subcellular organelles to adapt to changing nutrient supply. PEX19 was originally described as an essential peroxisome biogenesis factor that selectively targets membrane proteins to peroxisomes. Metabolic aberrations that were associated with compromised PEX19 functions, were solely attributed to the absence of peroxisomes, which is also considered the underlying cause for Zellweger Spectrum Disorders. More recently, however, it was shown that PEX19 also mediates the targeting of the VCP/P97-recuitment factor UBXD8 to the ER from where it partitions to lipid droplets (LDs) but the physiological consequences remained elusive. Here, we addressed the intriguing possibility that PEX19 coordinates the functions of the major cellular sites of lipid metabolism. We exploited the farnesylation of PEX19 and deciphered the organelle-specific functions of PEX19 using systems level approaches. Non-farnesylated PEX19 is sufficient to fully restore the metabolic activity of peroxisomes, while farnesylated PEX19 controls lipid metabolism by a peroxisome-independent mechanism that can be attributed to sorting a specific protein subset to LDs. In the absence of this PEX19-dependent LD proteome, cells accumulate excess triacylglycerols and fail to fully deplete their neutral lipid stores under catabolic conditions, highlighting a hitherto unrecognized function of PEX19 in controlling neutral lipid storage and LD dynamics.
RESUMO
Methylxanthines (MTX) are purine derived xanthine derivatives. Whereas naturally occurring methylxanthines like caffeine, theophylline or theobromine are widely consumed in food, several synthetic but also non-synthetic methylxanthines are used as pharmaceuticals, in particular in treating airway constrictions. Besides the well-established bronchoprotective effects, methylxanthines are also known to have anti-inflammatory and anti-oxidative properties, mediate changes in lipid homeostasis and have neuroprotective effects. Known molecular mechanisms include adenosine receptor antagonism, phosphodiesterase inhibition, effects on the cholinergic system, wnt signaling, histone deacetylase activation and gene regulation. By affecting several pathways associated with neurodegenerative diseases via different pleiotropic mechanisms and due to its moderate side effects, intake of methylxanthines have been suggested to be an interesting approach in dealing with neurodegeneration. Especially in the past years, the impact of methylxanthines in neurodegenerative diseases has been extensively studied and several new aspects have been elucidated. In this review we summarize the findings of methylxanthines linked to Alzheimer´s disease, Parkinson's disease and Multiple Sclerosis since 2017, focusing on epidemiological and clinical studies and addressing the underlying molecular mechanisms in cell culture experiments and animal studies in order to assess the neuroprotective potential of methylxanthines in these diseases.
Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Xantinas/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/epidemiologia , Animais , Cafeína/administração & dosagem , Café/química , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/epidemiologia , Teobromina/administração & dosagem , Teofilina/administração & dosagemRESUMO
Alzheimer's disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-ß (Aß). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aß-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.
Assuntos
Acitretina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Modelos Animais de Doenças , Lipidômica , Fígado/metabolismo , Modelos Biológicos , Doença de Alzheimer/metabolismo , Animais , CamundongosRESUMO
The accumulation of amyloid ß-protein (Aß) is one of the major pathological hallmarks of Alzheimer's disease. Insulin-degrading enzyme (IDE), a zinc-metalloprotease, is a key enzyme involved in Aß degradation, which, in addition to Aß production, is critical for Aß homeostasis. Here, we demonstrate that saturated medium-chain fatty acids (MCFAs) increase total Aß degradation whereas longer saturated fatty acids result in an inhibition of its degradation, an effect which could not be detected in IDE knock-down cells. Further analysis of the underlying molecular mechanism revealed that MCFAs result in an increased exosomal IDE secretion, leading to an elevated extracellular and a decreased intracellular IDE level whereas gene expression of IDE was unaffected in dependence of the chain length. Additionally, MCFAs directly elevated the enzyme activity of recombinant IDE, while longer-chain length fatty acids resulted in an inhibited IDE activity. The effect of MCFAs on IDE activity could be confirmed in mice fed with a MCFA-enriched diet, revealing an increased IDE activity in serum. Our data underline that not only polyunsaturated fatty acids such as docosahexaenoic acid (DHA), but also short-chain fatty acids, highly enriched, for example in coconut oil, might be beneficial in preventing or treating Alzheimer's disease.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos/metabolismo , Insulisina/metabolismo , Proteólise , Animais , Biocatálise , Linhagem Celular , Camundongos Endogâmicos C57BL , Modelos BiológicosRESUMO
Alzheimer's disease (AD) is neuropathologically characterized by the accumulation of Amyloid-ß (Aß) in senile plaques derived from amyloidogenic processing of a precursor protein (APP). Recently, changes in mitochondrial function have become in the focus of the disease. Whereas a link between AD and lipid-homeostasis exists, little is known about potential alterations in the lipid composition of mitochondria. Here, we investigate potential changes in the main mitochondrial phospholipid classes phosphatidylcholine, phosphatidylethanolamine and the corresponding plasmalogens and lyso-phospholipids of a cellular AD-model (SH-SY5Y APPswedish transfected cells), comparing these results with changes in cell-homogenates. Targeted shotgun-lipidomics revealed lipid alterations to be specific for mitochondria and cannot be predicted from total cell analysis. In particular, lipids containing three and four times unsaturated fatty acids (FA X:4), such as arachidonic-acid, are increased, whereas FA X:6 or X:5, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), are decreased. Additionally, PE plasmalogens are increased in contrast to homogenates. Results were confirmed in another cellular AD model, having a lower affinity to amyloidogenic APP processing. Besides several similarities, differences in particular in PE species exist, demonstrating that differences in APP processing might lead to specific changes in lipid homeostasis in mitochondria. Importantly, the observed lipid alterations are accompanied by changes in the carnitine carrier system, also suggesting an altered mitochondrial functionality.
RESUMO
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Assuntos
Plasmalogênios , Animais , Carnitina , Colecalciferol , Etanolamina , CamundongosRESUMO
The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-ß (Aß), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aß-production and reduced Aß-degradation, leading to increased Aß-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased ß-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aß-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aß-degrading-enzymes. Regarding Aß-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aß-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Capsaicina/efeitos adversos , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Contraindicações de Medicamentos , Expressão Gênica , Humanos , NeuroblastomaRESUMO
One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-ß (Aß) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aß-production and -degradation is necessary to prevent pathological Aß-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aß-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aß-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aß-production caused by APP or Presenilin deficiency, IDE-mediated Aß-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aß-production and Aß-degradation forming a regulatory cycle in which AICD promotes Aß-degradation via IDE and IDE itself limits its own production by degrading AICD.
Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Insulisina/metabolismo , Doença de Alzheimer/patologia , Humanos , Transdução de SinaisRESUMO
A vast majority of the elderly population shows a mild to moderate vitamin D deficiency. Besides the well-known function of vitamin D, vitamin D receptor is also expressed in brain and is discussed to regulate several genes. However very little is known whether genes are regulated, associated with Alzheimer's disease (AD). Here we investigate 117 genes, known to be affected in AD, in mouse brain samples with a mild vitamin D hypovitaminosis comparable to the vitamin D status of the elderly population (20%-30% deficiency). The 117 genes include two positive controls, Nep and Park7, already known to be affected by both AD and vitamin D hypovitaminosis. The 25 most promising candidates were verified in a second independent mouse cohort, resulting in eleven genes further evaluated against three additional housekeeping genes. Three of the remaining eight significantly altered genes are involved in APP homeostasis (Snca, Nep, Psmb5), and each one gene in oxidative stress (Park7), inflammation (Casp4), lipid metabolism (Abca1), signal transduction (Gnb5) and neurogenesis (Plat). Our results tighten the link of vitamin D and AD and underline that vitamin D influences several genes also in brain, highlighting that a strong link not only to AD but also to other neurodegenerative diseases might exist.
Assuntos
Doença de Alzheimer/genética , Encéfalo/fisiologia , Deficiência de Vitamina D/genética , Animais , Feminino , Perfilação da Expressão Gênica , Inflamação/genética , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Deficiência de Vitamina D/etiologiaRESUMO
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-ß (Aß) level by shifting the amyloid precursor protein (APP) processing from the Aß-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas ß-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased ß-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aß1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aß and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.